
From: Dworkin, Morris J. (Fed)
To: Cooper, David (Fed); Dang, Quynh H. (Fed); Davidson, Michael S. (Fed); Miller, Carl A. (Fed); 
Subject: FW: Draft summary for PQC team
Date: Thursday, June 4, 2020 3:09:33 PM
Attachments: llc-NIST SP on stateful HBS 20200501.docx

I used the Sharepoint interface to send Lily’s comments (below, and in the attachedfile ) yesterday,
forgetting that you might not see it that way.
 
So let’s not meet tomorrow, but plan to check in Tuesday at 1:00. I sent a calendar invitation.
 
Morrie
 

From: "Dworkin, Morris J. (Fed)" <morris.dworkin@nist.gov>
Date: Wednesday, June 3, 2020 at 10:04 AM
To: Stateful Hash-Based Signatures <StatefulHash-
BasedSignatures@nistgov.onmicrosoft.com>
Subject: FW: Draft summary for PQC team
 
Good morning,
 
FYI, here are Lily’s comments. John has told me that he’s still working on his.
 
Since there’s no full team meeting, I’m thinking we can check in with a teleconference at 10 on
Friday?
 
Morrie
 

From: "Chen, Lily (Fed)" <lily.chen@nist.gov>
Date: Tuesday, June 2, 2020 at 4:07 PM
To: "Dworkin, Morris J. (Fed)" <morris.dworkin@nist.gov>
Subject: Re: Draft summary for PQC team
 
Hi, Morrie,
 
The document is well written. I agree with the resolutions the WG proposed on the public
comments. I have a few very minor editorial comments as attached. It is not an easy task to have a
Recommendation based on IETF RFCs w.r.t. what should be included in this Recommendation. Most
of my comments are on whether to refer or to give a short explanation in this document.  If you have
question, please let me know.
 
Thanks,
Lily
 

(b) (6)



From: Morris Dworkin <morris.dworkin@nist.gov>
Date: Monday, May 4, 2020 at 9:14 AM
To: internal-pqc <internal-pqc@nist.gov>
Subject: FW: Draft summary for PQC team
 

On behalf of the internal working group for stateful hash-based signatures, I am
attaching for your review 1) our proposed responses to the public comments that we
received on Draft SP 800-208, and 2) the revision of the draft SP, both a Word file with
the changes tracked and a clean PDF file.  If you have any comments on the
documents, please send them to me by Friday, May 15, or let me know if you would
like extra time.
 
Below is a summary of the main issues we considered.
 
Regards,
 
Morrie
 
Technical:

1. Many commenters objected to the prohibition against the exporting of
private keys from the module.  The WG strongly recommends that the
prohibition be maintained. The revised SP clarifies that even encrypted
keys may not be exported—see Thales’s Comment 10.

2. ETSI’s comments included a multi-target attack on XMSS key generation--
see Page 19 of public comment document, referring to Line 576 of the draft
SP.  The revised draft mandates a new key generation function to address
the attack. David notified the XMSS designers of the proposal, and they did
not object. 

3. Kampanakis (Cisco) and Google requested Level 1 parameter sets, i.e., with
128-bit hash values.  The WG recommends against this change but did not
reach a consensus on the formal response to the comments.  In particular, it
is difficult to justify why the draft SP went beyond the RFCs in specifying
Level 3 parameter sets, i.e., 192-bit hash values, but not all the way to
Level 1. Feedback from the full PQC team would be helpful.

4. The draft SP “Notes to Reviewers” asked whether a method should be
specified for distributing a single Merkle tree across multiple modules,
without violating the prohibition on key export, in order to shorten
signatures compared to multi-tree implementations.  Since no commenters
requested the method, the WG decided not to provide it.

5. The Notes to Reviewers also asked about the appropriateness of the
specified parameter sets.  No commenter advocated for removal of any
specific parameter sets, and the Level 1 parameter sets—discussed in 4)



above—were the only new sets specifically requested. A couple of
commenters requested  that the parameter sets for HSS and XMSS^MT be
harmonized, but no specific proposals were provided, and the WG didn’t
agree that the harmonization would be very beneficial.

6. The WG did not agree with Huelsing’s suggestion to provide a method for
forward-secure key generation.

7. The WG did not agree with NSA’s suggestion to provide parameter sets
with SHA-384 and SHA 512, nor Thales’s suggestion (Comment 7) to
allow a block cipher-based replacement for the hash function.

8. The revised SP clarifies that a “one-time" signature may not be re-generated
on the same message; the WG decided that an entire subsection on fault
injection attacks was therefore unnecessary.

9. The revised SP requires that the entropy source for any random bit
generation be located inside the physical boundary of the module.

Editorial
10. Subsection 2.3 (Mathematical Symbols) was expanded to include

the variables from the schemes that were discussed elsewhere  in the
SP.

11. An underlying assumption in the description of the security proof for
XMSS was corrected.

12.  In response to Yi-Kai’s comments before the release of the draft SP, a brief
discussion of the difficulty of key revocation is provided in Subsection 9.3.

13. The WG did not agree with Thales’s suggestion (Comment 4) to provide a
comparison of performance data as guidance for selecting one of the two
schemes.
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Reports on Computer Systems Technology 92 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 93 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 94 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 95 
methods, reference data, proof of concept implementations, and technical analyses to advance the 96 
development and productive use of information technology. ITL’s responsibilities include the 97 
development of management, administrative, technical, and physical standards and guidelines for 98 
the cost-effective security and privacy of other than national security-related information in federal 99 
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 100 
outreach efforts in information system security, and its collaborative activities with industry, 101 
government, and academic organizations. 102 

Abstract 103 

This recommendation specifies two algorithms that can be used to generate a digital signature, 104 
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS) 105 
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants, 106 
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT). 107 

 Keywords  108 

cryptography; digital signatures; hash-based signatures; public-key cryptography.  109 
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Document Conventions 110 

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to 111 
conform to the publication and from which no deviation is permitted. 112 

The terms “should” and “should not” indicate that among several possibilities one is 113 
recommended as particularly suitable, without mentioning or excluding others, or that a certain 114 
course of action is preferred but not necessarily required, or that (in the negative form) a certain 115 
possibility or course of action is discouraged but not prohibited. 116 

The terms “may” and “need not” indicate a course of action permissible within the limits of the 117 
publication. 118 

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical or 119 
causal. 120 

Conformance Testing 121 

Conformance testing for implementations of the functions that are specified in this publication 122 
will be conducted within the framework of the Cryptographic Algorithm Validation Program 123 
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements on these 124 
implementations are indicated by the word “shall.” Some of these requirements may be out-of-125 
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, 126 
implementing, installing, or configuring applications that incorporate this Recommendation. 127 

Note to Reviewers 128 

Sections 4 and 5 specify the parameter sets that are approved by this recommendation for LMS, 129 
HSS, XMSS, and XMSSMT. Given the large number of parameter sets specified in these two 130 
sections, NIST would like feedback on whether there would be a benefit in reducing the number 131 
of parameter sets that are approved, and if so, which ones should be removed. 132 

While this recommendation does not allow cryptographic modules to export private keying 133 
material, Section 7 describes a way in which a single key pair can be created with the one time 134 
keys being spread across multiple cryptographic modules. The method described in Section 7 135 
involves creating a 2 level HSS or XMSSMT tree where the one time keys associated with each of 136 
the bottom level trees can be created on a different cryptographic module. 137 

NIST believes that it would be possible to create a one level XMSS or LMS tree in which the 138 
one time keys are not all created and stored on the same cryptographic module. Key generation 139 
would be more complicated to implement, though, as would be the steps that end users would 140 
have to perform during the key generation process. However, a one-level tree would result in 141 
shorter signatures. 142 

NIST would like feedback on whether there is a need to be able to create one-level XMSS or 143 
LMS keys in which the one-time keys are not all created and stored on the same cryptographic 144 
module even though such an option would be more complicated to implement and use than the 145 
two-level option that is already described in the draft.  146 
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Call for Patent Claims 147 

This public review includes a call for information on essential patent claims (claims whose use 148 
would be required for compliance with the guidance or requirements in this Information 149 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 150 
directly stated in this ITL Publication or by reference to another publication. This call also 151 
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 152 
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 153 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 154 
in written or electronic form, either: 155 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 156 
does not currently intend holding any essential patent claim(s); or 157 

b) assurance that a license to such essential patent claim(s) will be made available to applicants 158 
desiring to utilize the license for the purpose of complying with the guidance or requirements 159 
in this ITL draft publication either: 160 

i) under reasonable terms and conditions that are demonstrably free of any unfair 161 
discrimination; or 162 

ii) without compensation and under reasonable terms and conditions that are demonstrably 163 
free of any unfair discrimination. 164 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 165 
on its behalf) will include in any documents transferring ownership of patents subject to the 166 
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 167 
the transferee, and that the transferee will similarly include appropriate provisions in the event of 168 
future transfers with the goal of binding each successor-in-interest. 169 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 170 
regardless of whether such provisions are included in the relevant transfer documents. 171 

Such statements should be addressed to: pqc-comments@nist.gov 172 
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1 Introduction 255 

This publication supplements FIPS 186-4 [4] by specifying two additional digital signature 256 
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali 257 
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with 258 
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS 259 
(XMSSMT). All of the digital signature schemes specified in FIPS 186-4 will be broken if large-260 
scale quantum computers are ever built. The security of the stateful HBS schemes in this 261 
publication, however, only depends on the security of the underlying hash functions—in 262 
particular, the infeasibility of finding a preimage or a second preimage—and it is believed that 263 
the security of hash functions will not be broken by the development of large-scale quantum 264 
computers [20]. 265 

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate 266 
for use by the U.S. Federal Government. This profile approves the use of some but not all of the 267 
parameter sets defined in [1] and [2] and also defines some new parameter sets. The approved 268 
parameter sets use 192- or 256-bit outputs with either SHA-256 [3] or SHAKE256 [5] with 192  269 
or 256 bit outputs. It requires that key and signature generation be performed in hardware 270 
cryptographic modules that do not allow secret keying material to be exported, even in encrypted 271 
form. 272 

1.1 Intended Applications for Stateful HBS Schemes 273 

NIST is in the process of developing standards for post-quantum secure digital signature 274 
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful 275 
HBS schemes are not suitable for general use because they require careful state management that 276 
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8]. 277 

Instead, stateful HBS schemes are primarily intended for applications with the following 278 
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2) 279 
the implementation will have a long lifetime; and 3) it would not be practical to transition to a 280 
different digital signature scheme once the implementation has been deployed.  281 

An application that may fit this profile is authenticating firmware updates for constrained 282 
devices. Some constrained devices that will be deployed in the near future will be in use for 283 
decades. These devices will need to have a secure mechanism for receiving firmware updates, 284 
and it may not be practical to change the code for verifying signatures on updates once the 285 
devices have been deployed. 286 

1.2 The Importance of the Proper Maintenance of State 287 

In a stateful HBS scheme, an HBS private key pair consists of a large set of one-time signature 288 
(OTS) private key pairs. An HBS key pair may contain thousands, millions, or billions of OTS 289 
keys, and the The signer needs to ensure that no individual OTS key is ever used to sign more 290 
than one message. If an attacker were able to obtain digital signatures for two different messages 291 
created using the same OTS key, then it would become computationally feasible for that attacker 292 
to forge signatures on arbitrary messages [13]. Therefore, as described in [8], when a stateful 293 
HBS scheme is implemented, extreme care needs to be taken in order to ensure that no OTS key 294 
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is ever reused. 295 

In order to obtain assurance that OTS keys are not reused, the signing process should be 296 
performed in a highly controlled environment. As described in [8], there are many ways in which 297 
seemingly routine operations could lead to the risk of one-time key reuse. The conformance 298 
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS 299 
schemes are intended to help prevent one-time key reuse. 300 

1.3 Outline of Text 301 

The remainder of this document is divided into the following sections and appendices: 302 

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms, 303 
acronyms, and mathematical symbols used in this document. This section is informative. 304 

• Section 3, General Discussion, gives a conceptual explanation of the elements used in 305 
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash 306 
prefixes). This section may be used as either a high-level overview of stateful hash-based 307 
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS 308 
provided in [1] and [2]. This section is informative. 309 

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter 310 
sets that are approved for use by this Special Publication with LMS and HSS. 311 

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the 312 
parameter sets that are approved for use by this Special Publication with XMSS and 313 
XMSSMT. 314 

• Section 6, Random Number Generation for Keys and Signatures, states how the random 315 
data used in XMSS and LMS must be generated. 316 

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for 317 
distributing the implementation of a single HSS or XMSSMT instance over multiple 318 
cryptographic modules. 319 

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module 320 
validation that are specific to modules that implement the algorithms in this document. 321 

• Section 9, Security Considerations, enumerates security risks in various scenarios for 322 
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that 323 
should be taken to maximize the security of an implementation. This section is 324 
informative. 325 

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the 326 
External Data Representation (XDR) syntax for LMS in order to support the new 327 
parameter sets specified in this document. 328 

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the 329 
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified 330 
in this document. 331 
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• Appendix C, Provable Security Analysis, provides information about the security proofs 332 
that are available for LMS and XMSS. This section is informative.  333 
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2 Glossary of Terms, Acronyms, and Mathematical Symbols 334 

2.1 Terms and Definitions 335 

approved FIPS-approved or NIST-recommended. An algorithm or technique 
that is either 1) specified in a FIPS or NIST Recommendation, or 2) 
adopted in a FIPS or NIST Recommendation and specified either (a) 
in an appendix to the FIPS or NIST Recommendation, or (b) in a 
document referenced by the FIPS or NIST Recommendation. 

 336 
2.2 Acronyms 337 

Selected acronyms and abbreviations used in this publication are defined below. 338 

EEPROM Electronically erasable programmable read-only memory 

EUF-CMA Existential unforgeability under adaptive chosen message attacks 

FIPS Federal Information Processing Standard 

HBS Hash-based signature 

HSS Hierarchical Signature Scheme 

IRTF Internet Research Task Force 

LM-OTS Leighton-Micali One-Time Signature 

LMS Leighton-Micali signature 

NIST National Institute of Standards and Technology 

OTS One-time signature 

QROM Quantum random oracle model 

RAM Random access memory 

RFC Request for Comments 

ROM Random oracle model 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special publication 
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simply concatenating the keys together, the resulting public key would be unacceptably large. 388 
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to 389 
be very short in exchange for requiring a small amount of additional information to be provided 390 
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the 391 
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up. 392 
Those hash values are then hashed together in pairs, the resulting hash values are hashed 393 
together, and so on until all of the public keys have been used to generate a single hash value (the 394 
root of the tree), which will be used as the long-term public key. 395 

 396 

Figure 4: A Merkle Hash Tree 397 

Figure 3 depicts a hash tree containing eight OTS public keys (k0 … k7). The eight keys are each 398 
hashed to form the leaves of the tree (h0 … h7), and the eight leaf values are hashed in pairs to 399 
create the next level up in the tree (h01, h23, h45, h67). These four hash values are again hashed in 400 
pairs to create h0−3 and h4−7, which are hashed together to create the long-term public key, h0−7. 401 
In order for an entity that had already received h0−7 in a secure manner to verify a message 402 
signed using k2, the signer would need to provide h3, h01, and h4−7 in addition to k2. The verifier 403 
would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ = 𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′ ), and ℎ0−7′ =404 
𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′  is the same as h0−7, then k2 may be used to verify the message signature. 405 

3.3 Two-Level Trees 406 

Both [1] and [2] define single tree as well as multi-tree variants of their signature schemes. In an 407 
instance that involves two levels of trees, as shown in Figure 4, the OTS keys that form the 408 
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that 409 
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level 410 
tree is the long-term public key for the signature scheme.3 411 

 

3 While this section only describes two-level trees, HSS allows for up to eight levels of trees and XMSSMT allows for up to 12 
levels of trees.  
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scheme. This address is then hashed along with a unique identifier (SEED) for the long-term 437 
public key (SEED)to create the prefix. 438 

Unlike LMS, XMSS also uses bitmasks. In addition to creating the prefix, a slightly different 439 
address is also hashed along with the SEED to create a bitmask. The bitmask is then exclusive-440 
ORed with the input before the input is hashed along with the prefix. Figure 5 illustrates an 441 
example of this computation. In [1], the hash function is referred to as H, H_msg, F, or PRF, 442 
depending on where it is being used. However, in each case it is the same function, just with a 443 
different prefix prepended in order to ensure separation between the uses. 444 

  445 

Figure 6: XMSS hash computation with prefix and bitmask 

⊕
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for each XMSS key pair.  602 
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7 Distributed Multi-Tree Hash-Based Signatures 603 

If a digital signature key will be used to generate signatures over a long period of time and 604 
replacing the public key would be difficult, then storing the private key in multiple places to 605 
protect against lossit will be necessary to prepare for the possibility that a cryptographic module 606 
holding the private key may fail during the key’s lifetime. In the case of most digital signature 607 
schemes, this just involves makinga common solution is to make copies of the private key. 608 
However, in the case of stateful HBS schemes, simply copying the private key would create a 609 
risk of OTS key reuse. 610 

 An alternative that avoids this risk is to have multiple cryptographic modules that each generate 611 
their own OTS keys and then create a single instance that includes all of the public keys from all 612 
of the modules. 613 

While it would also be possible to have one cryptographic module generate all of the OTS keys 614 
and then distribute different OTS keys to each of the other cryptographic modules, doing so is 615 
not an option for cryptographic modules conforming to this recommendation. D: due to the risks 616 
associated with copying OTS keys, this recommendation prohibits exporting private keying 617 
material (Section 8). 618 

One option would be to create multiple stateful HBS keys on different cryptographic modules 619 
and then configure clients to accept signatures created using any of these keys. These keys could 620 
be distributed to clients all at once or a using mechanism such as the Hash Of Root Key 621 
certificate extension [23], which provides a mechanism for distributing new public keys over 622 
time. 623 

Another option would be to create a single stateful HBS key in which the OTS private keys are 624 
distributed across multiple cryptographic modules. The easiest way to have OTS keys on 625 
multiple cryptographic modules without exporting private keys is to use HSS or XMSSMT with 626 
two levels of trees where the each trees are is instantiated on a different cryptographic modules. 627 
First, a top-level LMS or XMSS key pair would be created in a cryptographic module. The top 628 
level’s OTS keys would only be used to sign the roots of other trees. Then, bottom-level LMS or 629 
XMSS key pairs would be created in other cryptographic modules, and the public keys from 630 
those key pairs (i.e., the roots of their Merkle trees) would be signed by OTS keys of the top-631 
level key pair. The OTS keys of the bottom-level key pairs would be used to sign ordinary 632 
messages. The number of bottom-level key pairs that could be created would only be limited by 633 
the number of OTS keys in the top-level key pair. 634 

As an example, suppose that an organization wishes to have a single XMSSMT key with the OTS 635 
private keys being distributed across two cryptographic modules (in case one fails), and the 636 
organization has determined that at most 10 000 signatures will need to be generated over the 637 
lifetime of the XMSSMT key. The organization could create a top-level XMSS key pair on one 638 
cryptographic module using the XMSSMT-SHA2 20/2 256 parameter set and could then create 639 
10 bottom-level XMSS keys on that same cryptographic module. An additional 10 bottom-level 640 
XMSS keys could be created on a second cryptographic module, with all 20 of the bottom-levels 641 
keys being signed by OTS keys of the top-level key pair. 642 
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When working with distributed multi-tree hash-based signatures, the cryptographic module 643 
holding the top-level tree is a potential single point of failure. Once this cryptographic module 644 
fails it is no longer possible to sign the additional bottom-level key pairs. So, all of the bottom-645 
level keys should be generated up-front as part of the initial key generation ceremony. Once the 646 
top-level key has been used to sign all of the bottom-level keys, the top-level key is no longer 647 
needed, as copies of the signatures created using OTS keys of the top-level key pair may be 648 
stored outside of the cryptographic module. 649 

In order to avoid the top-level key being a single point of failure, the two options described 650 
above could be combined to create multiple distributed multi-tree HBS keys. Multiple top-level 651 
keys pairs would initially be created, each on a different cryptographic module, and clients 652 
would be configured to accept signatures created using any of these keys. Then, whenever a new 653 
bottom-level key needed to be created, it could be signed by any one of the top-level keys. This 654 
would allow for new bottom-level keys to be created as long as at least one of the cryptographic 655 
modules containing a top-level key remained operational. Of course, the same level of care 656 
should be used in signing a bottom-level key as would be used during the initial key generation 657 
ceremony (or as would be used in making a copy of an RSA or ECDSA private key). 658 

7.1 HSS 659 

In the case of HSS, the distributed multi-tree scheme described above can be implemented using 660 
multiple cryptographic modules that each implement LMS without modifications. The top-level 661 
LMS public key can be converted to an HSS public key by an external, non-cryptographic 662 
device. This device can also submit the public keys of the bottom-level LMS keys to be signed 663 
by the top-level LMS key. In HSS, the operation for signing the root of a lower-level tree is the 664 
same as the operation for signing an ordinary message. Finally, this external device can submit 665 
ordinary messages to cryptographic modules holding the bottom-level LMS keys for signing and 666 
then combine the resulting LMS signatures with the top-level key’s signature on the bottom-level 667 
LMS public key in order to create the HSS signature for the ordinary messages (see Algorithm 668 
78 and Algorithm 89 in [2]). 669 

7.2 XMSSMT 670 

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules 671 
requires each cryptographic module to implement slightly modified versions of the XMSS key 672 
and signature generation algorithms provided in [1]. The modified versions of these algorithms 673 
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each 674 
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes 675 
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED 676 
and that the root of the top-level tree is used when computing the hashes of messages to be 677 
signed. 678 

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF 679 
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each 680 
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF 681 
for each cryptographic module does not exactly align with the specification in [1], doing so does 682 
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate 683 
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for 684 
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generating random values could be used to generate r. 685 

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in 686 
order to implement XMSSMT key and signature generation using a set of cryptographic modules 687 
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1 688 
have been designed to work with XMSSMT instances that have more than two layers, the 689 
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being 690 
created. 691 

7.2.1 Modified XMSS Key Generation and Signature Algorithms 692 

Algorithm 10': XMSS'_keyGen 693 

  // L needs to be in the range [0 … d-1] 694 
  // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1] 695 
  Input: level L, tree t, 696 
         public key of top-level tree PK_MT (if L ≠ d - 1) 697 
  Output: XMSS public key PK 698 

  Initialize S XMSS with an n-byte string using an approved 699 
  random bit generator [6], where the instantiation of the 700 
  random bit generator supports at least 8n bits of security 701 
  strength; 702 

  // SEED needs to be generated for the top-level XMSS key. 703 
  // For all other XMSS keys, the value needs to be copied from 704 
  // the top-level XMSS key. 705 
  if ( L = d – 1 ) { 706 
    Initialize SEED with an n-byte string using an approved 707 
    random bit generator [6], where the instantiation of the 708 
    random bit generator supports at least 8n bits of security 709 
    strength; 710 
  } else { 711 
    SEED = getSEED(PK MT); 712 
  } 713 
  setSEED(SK, SEED); 714 

  ADRS = toByte(0, 32); 715 
  ADRS.setLayerAddress(L); 716 
  ADRS.setTreeAddress(t); 717 

  // Example initialization for SK-specific contents 718 
  idx = t * 2^(h / d); 719 
  for ( i = 0; i < 2^(h / d); i++ ) { 720 
    ADRS.setOTSAddress(i); 721 
    // For each OTS key, i, generate the private key value for 722 
    // chain in the OTS key. 723 
    for ( j=0; j < len; j++) { 724 
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      ADRS.setChainAddress(j); 725 
      sk[j] = PRFkeygen(S XMSS, SEED || ADRS); 726 
    } 727 
    // Set the secret key for OTS key i to the array of len 728 
    // private key values generated for that key. 729 
    wots_sk[i] = WOTS_genSK()sk; 730 
  } 731 
  setWOTS SK(SK, wots sk); 732 

  Initialize SK_PRF with an n-byte string using an approved 733 
  random bit generator [6], where the instantiation of the 734 
  random bit generator supports at least 8n bits of security 735 
  strength;. 736 
  setSK_PRF(SK, SK_PRF); 737 

  // SEED needs to be generated for the top-level XMSS key. 738 
  // For all other XMSS keys, the value needs to be copied from 739 
  // the top level XMSS key. 740 
  if ( L = d – 1 ) { 741 
    Initialize SEED with an n-byte string using an approved 742 
    random bit generator [6], where the instantiation of the 743 
    random bit generator supports at least 8n bits of security 744 
    strength;. 745 
  } else { 746 
    SEED = getSEED(PK_MT); 747 
  } 748 
  setSEED(SK, SEED); 749 
  setWOTS_SK(SK, wots_sk); 750 
  ADRS = toByte(0, 32); 751 
  ADRS.setLayerAddress(L); 752 
  ADRS.setTreeAddress(t); 753 
  root = treeHash(SK, 0, h / d, ADRS); 754 
 755 
  setLayerAddress(SK, L); 756 
  setTreeAddress(SK, t); 757 
  setIdx(SK, idx); 758 

  // The "root" value in SK needs to be the root of the top-level 759 
  // XMSS tree, as this is the value used when hashing the message 760 
  // to be signed. 761 
  if ( L = d – 1 ) { 762 
    setRoot(SK, root); 763 
    SK = L || t || idx || wots_sk || SK_PRF || root || SEED; 764 
  } else { 765 
    setRoot(SK, getRoot(PK MT)); 766 
    SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED; 767 
  } 768 
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  // The public key should be encoded using the XDR for 769 
  // xmssmt public key in Appendix C.3 of [1], with the additions 770 
  // specified in Appendix B.3 of this document. 771 
  PK = OID || root || SEED; 772 
  return PK; 773 

Algorithm 12': XMSS'_sign 774 

  Input: Message M 775 
  Output: signature Sig 776 

  idx_sig = getIdx(SK); 777 
  setIdx(SK, idx_sig + 1); 778 
  L = getLayerAddress(SK); 779 
  t = getTreeAddress(SK); 780 
  ADRS = toByte(0, 32); 781 
  ADRS.setLayerAddress(L); 782 
  ADRS.setTreeAddress(t); 783 

  if ( L > 0 ) { 784 
    // M must be the n-byte root from an XMSS public key 785 
    byte[n] r = 0; // n-byte string of zeros 786 
    byte[n] M' = M; 787 
  } else { 788 
    byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32)); 789 
    byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);  790 
  } 791 
  idx_leaf = idx_sig - t * 2^(h / d); 792 
  Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS); 793 
  return Sig; 794 

7.2.2 XMSSMT External Device Operations 795 

XMSS^MT external device keygen 796 

  Input: No input 797 

  // Generate top-level key pair on a cryptographic module 798 
  PK_MT = XMSS'_keyGen(1, 0, NULL); 799 

  t = 0; 800 
  for each bottom-level key pair to be created { 801 
    // Generate bottom-level key pair on a cryptographic module 802 
    PK[t] = XMSS’_keygen(0, t, PK_MT); 803 

    // Submit root of bottom-level key pair’s public key 804 
    // to be signed by the top-level key pair. 805 
    SigPK[t] = XMSS'_sign(getRoot(PK[t])); 806 
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    // If the public key on the bottom-level tree was created using 807 
    // a tree address of t, then its root needs to be signed by OTS 808 
    // key t of the top-level tree. If it wasn’t, then try again.6 809 
    if while ( getIdx(SigPK[t]) ≠ t ) { 810 
      t = getIdx(SigPK[t]) + 1; 811 
      PK[t] = XMSS'_keygen(0, t, PK_MT); 812 
      SigPK[t] = XMSS'_sign(getRoot(PK[t])); 813 
    } 814 
    t = t + 1; 815 
  } 816 

XMSS^MT external device sign 817 

  Input: Message M  818 
  Output: signature Sig 819 

  // Send XMSS'_sign() command to one of the bottom-level key pairs 820 
  Sig_tmp = XMSS'_sign(M); 821 

  idx_sig = getIdx(Sig_tmp); 822 

  // Determine which bottom-level tree was used to sign the message 823 
  // by extracting at the most significant bits of idx sig. 824 
  t = [idx sig – (idx sig mod 2^(h / d))]/ 2^(h / d)) most 825 
significant bits of idx_sig; 826 

  // Append the signature of the signing key pair's root 827 
  // (just the output of treeSig, not idx_sig or r). 828 
  Sig = Sig_tmp || getSig(SigPK[t]); 829 
  return Sig;  830 

 

6 While the signing cryptographic module should use its one-time keys sequentially, making it possible for the external device to 
determine in advance which one-time key will be used to sign the public key of bottom-level tree, the external device cannot 
specify to the signing cryptographic module which one-time key it should use. So, there is a small chance that an internal glitch 
in the signing cryptographic will cause it to skip over one or more key indices and sign the bottom-level’s public key using an 
unexpected key index. While this event should be rare, if it does happen, the only option is to regenerate the bottom-level key 
pair, setting the tree address to the next expected key index, and then try again. 
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8 Conformance 831 

8.1 Key Generation and Signature Generation 832 

Cryptographic modules implementing signature generation for a parameter set shall also 833 
implement key generation for that parameter set. Implementations of the key generation and 834 
signature algorithms in this document shall only be validated for use within hardware 835 
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or 836 
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be 837 
limited.7 In addition, a cryptographic module implementing the key generation or signature 838 
algorithms shall only operate in an approved mode of operation and shall not implement a 839 
bypass mode. The cryptographic module shall not allow for the export of private keying 840 
material. The entropy source for any approved random bit generator [6] used in the 841 
implementation shall be located inside the cryptographic module’s physical boundary. 842 

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a 843 
request to sign a message, the cryptographic module shall update increment the state leaf index 844 
of the private key (q in LMS, idx in XMSS, idx sig in XMSSMT) and shall store the incremented 845 
leaf index value in nonvolatile storage before exporting a signature value or accepting another 846 
request to sign a message. The cryptographic module shall not use an OTS key to generate a 847 
digital signature more than one time.8 848 

Cryptographic modules implementing LMS key and signature generation shall support at least 849 
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 850 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 851 
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic 852 
modules implementing LMS key and signature generation shall generate random data in 853 
accordance with Section 6.1. 854 

Cryptographic modules implementing XMSS key and signature generation shall implement 855 
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section 856 
5. (The WOTS+ key generation method specified in Algorithm 10' in Section 7.2.1 shall be 857 
used.) Cryptographic modules supporting implementation of XMSSMT key and signature 858 
generation shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this 859 
document for at least one of the XMSSMT parameter sets in Section 5. Cryptographic modules 860 
implementing XMSS or XMSSMT key and signature generation shall generate random data in 861 
accordance with Section 6.2. 862 

 

7 See Section 4.6 of FIPS 140-2 [19]. 

8 In some implementations of HSS or XMSSMT (e.g., Algorithm 16 in [1]), the root of the LMS or XMSS tree used to create the 
signature is signed by its parent each time a signature is generated. This results in an OTS key being used to generate a digital 
signature more than once. While the OTS key is used more than once, the message being signed is the same, and so the result is 
to just recreate the same signature (as long as the randomizer value is the same each time). However, as noted in [9] and [10], 
such implementations are vulnerable to fault injection attacks. Implementations compliant with this document must sign the root 
of each tree only once. The resulting signature may be stored within the cryptographic module or it may be exported from the 
cryptographic module for storage elsewhere. 
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8.2 Signature Verification 863 

Cryptographic modules implementing LMS signature verification shall support at least one of 864 
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 865 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 866 
from Section 4 that uses the same hash function as the LM-OTS parameter set. 867 

Cryptographic modules implementing XMSS signature verification shall implement Algorithm 868 
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules implementing 869 
XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one of the 870 
parameter sets in Section 5.  871 
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9 Security Considerations 872 

9.1 One-Time Signature Key Reuse 873 

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain 874 
signatures for two different messages created using the same one-time signature (OTS) key, then 875 
it would become computationally feasible for that attacker to create forgeries [13]. As noted in 876 
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused 877 
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions 878 
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully 879 
designed to ensure that unexpected behavior cannot result in an OTS key being reused. 880 

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a 881 
signature is generated. If the private key is stored in nonvolatile memory, then the state of the 882 
key must be updated in the nonvolatile memory to mark an OTS key as unavailable before the 883 
corresponding signature generated using the OTS key is exported. Depending on the 884 
environment, this can be nontrivial to implement. With many operating systems, simply writing 885 
the update to a file is not sufficient as the write operation will be cached with the actual write to 886 
nonvolatile memory taking place later. If the cryptographic module loses power or crashes before 887 
the write to nonvolatile memory, then the state update will be lost. If a signature were exported 888 
after the write operation was issued but before the update was written to nonvolatile memory, 889 
there would be a risk that the OTS key would be used again after the cryptographic module starts 890 
up. 891 

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to 892 
increase each time the counter’s value is read. When available, using the current value of a 893 
monotonic counter to determine which OTS key to use for a signature may be very helpful in 894 
avoiding unintentional reuse of an OTS key. 895 

9.2 Fault Injection Resistance 896 

Fault injection attacks involve the intentional introduction of an error at some point during the 897 
execution of an algorithm, such as by varying the voltage supplied to a device executing the 898 
algorithm, causing it to produce the wrong output, and providing the attacker with additional 899 
information. These attacks are most relevant for users of embedded cryptographic devices where 900 
an adversary may have physical access to the signing device and thus can control its operations. 901 

Fault injection attacks have been shown to be effective against hash based signatures, though 902 
they are more severe when used against stateless schemes like SPHINCS and its variants [9][10]. 903 
With hash based signatures, the attack works by forcing the cryptographic device to sign two 904 
different messages with the same OTS key. The attack takes advantage of the schemes where 905 
multiple levels of Merkle trees are used and the roots of lower-level trees are signed using a one-906 
time signature (XMSSMT and HSS) [10]. In some cases, the signatures on these roots are 907 
recomputed each time a message is signed. Under normal circumstances, this is acceptable since 908 
it just involves using an OTS key multiple times to sign the same message. However, by 909 
injecting a fault that introduces an error in the computation of the Merkle tree root at any of the 910 
non top layers, an attacker can cause the device to sign a different message under the same key. 911 
With both a valid and a faulty signature, the attacker can “graft” a new subtree into the hierarchy 912 
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and produce universal forgeries. 913 

The faulted signature remains a valid signature, so checking that the signature verifies is 914 
insufficient to detect or prevent this attack. The only reliable way to prevent this attack is to 915 
compute each one time signature once, cache the result, and output it whenever needed. When 916 
implementing multiple levels of trees as described in Section 7, this is the only option since no 917 
cryptographic module will use any OTS more than once. If multiple levels of trees are 918 
implemented within a single cryptographic module, it is recommended to cache a single, one-919 
time signature per layer of subtrees, refreshing them when a new subtree is used for signing [10]. 920 
While this prevents an attacker from learning about the secret key when a corrupted signature is 921 
cached, it does result in the cached one time signature being incorrect and thus prevents the 922 
hash based signature scheme from working. 923 

9.39.2 Hash Collisions 924 

In LMS and XMSS, as in the other approved digital signature schemes [4], the signature 925 
generation algorithm is not applied directly to the message but to a message digest generated by 926 
the underlying hash function. The security of any signature scheme depends on the inability of an 927 
attacker to find distinct messages with the same message digest. 928 

There are two ways that an attacker might find these distinct messages. The attacker could look 929 
for a message that has the same message digest as a message that has already been signed (a 930 
second preimage), or the attacker could look for any two messages that have the same message 931 
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of 932 
them [21]. Finding a second preimage is much more difficult than finding a generic collision, 933 
and it would be infeasible for an attacker to find a second preimage with any of the hash 934 
functions allowed for use in this recommendation. 935 

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a 936 
random value is created and prepended to the message, and the hash function is applied to this 937 
expanded message to produce the message digest. Prepending the random value makes it 938 
infeasible for anyone other than the signer to find a generic collision as finding a collision would 939 
require predicting the randomizing value. The randomized hashing process does not, however, 940 
impact the ability for a signer to create a generic collision since the signer, knowing the private 941 
key, could choose the random value to prepend to the message. 942 

The 1926-bit hash functions in this recommendation, SHA-256/1926 and SHAKE256/1926, 943 
offer significantly less resistance to generic collision searches than their 256-bit counterparts. In 944 
particular, a collision of the 1926-bit functions may be found as the number of sampled inputs 945 
approaches 296, as opposed to 2128 for the 256-bit functions, and it may be possible for a signer 946 
with access to an extremely large amount of computing resources to sample 296 inputs. 947 

Consequently, one tradeoff for the use of 1926-bit hash functions in LMS and XMSS is the 948 
weakening of the verifier’s assurance that the signer will not be able to change the message once 949 
the signature is revealed. This possibility does not affect the formal security properties of the 950 
schemes because it remains the case that only the signer could produce a valid signature on a 951 
message. 952 
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9.3 Revocation 953 

Although procedures for the revocation of a compromised key are out of the scope of this 954 
publication, the implementation of any signature scheme in principle should include such a 955 
procedure [22]. For implementations of stateful hash-based signature schemes, which would be 956 
vulnerable in the event of the OTS key reuse, revocation procedures would be arguably even 957 
more important. 958 

In practice, however, procedures for revocation that are timely, efficient, and robust are often 959 
difficult to implement. For applications with the characteristics described in Section 1.1, the 960 
difficulties would likely be magnified. 961 

  962 
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Appendix A—LMS XDR Syntax Additions 965 

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the 966 
XDR syntax in Section 3.3 of [2] is extended as follows. For data structures of type enum or 967 
union below, the values or case statements specified in this appendix are to be added to the 968 
ones specified in Section 3.3 of [2]. 969 

/* one-time signatures */ 970 
 971 
enum lmots_algorithm_type { 972 
  lmots_sha256_n24_w1 = TBD, 973 
  lmots_sha256_n24_w2 = TBD, 974 
  lmots_sha256_n24_w4 = TBD, 975 
  lmots_sha256_n24_w8 = TBD, 976 
  lmots_shake_n32_w1  = TBD, 977 
  lmots_shake_n32_w2  = TBD, 978 
  lmots_shake_n32_w4  = TBD, 979 
  lmots_shake_n32_w8  = TBD, 980 
  lmots_shake_n24_w1  = TBD, 981 
  lmots_shake_n24_w2  = TBD, 982 
  lmots_shake_n24_w4  = TBD, 983 
  lmots_shake_n24_w8  = TBD 984 
}; 985 
 986 
typedef opaque bytestring24[24]; 987 
 988 
struct lmots_signature_n24_p200 { 989 
  bytestring24 C; 990 
  bytestring24 y[200]; 991 
}; 992 
 993 
struct lmots_signature_n24_p101 { 994 
  bytestring24 C; 995 
  bytestring24 y[101]; 996 
}; 997 
 998 
struct lmots_signature_n24_p51 { 999 
  bytestring24 C; 1000 
  bytestring24 y[51]; 1001 
}; 1002 
 1003 
struct lmots_signature_n24_p26 { 1004 
  bytestring24 C; 1005 
  bytestring24 y[26]; 1006 
}; 1007 
 1008 
union lmots_signature switch (lmots_algorithm_type type) { 1009 
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 case lmots_sha256_n24_w1: 1010 
   lmots_signature_n24_p200 sig_n24_p200; 1011 
 case lmots_sha256_n24_w2: 1012 
   lmots_signature_n24_p101 sig_n24_p101; 1013 
 case lmots_sha256_n24_w4: 1014 
   lmots_signature_n24_p51  sig_n24_p51; 1015 
 case lmots_sha256_n24_w8: 1016 
   lmots_signature_n24_p26  sig_n24_p26; 1017 
 case lmots_shake_n32_w1: 1018 
   lmots_signature_n32_p265 sig_n32_p265; 1019 
 case lmots_shake_n32_w2: 1020 
   lmots_signature_n32_p133 sig_n32_p133; 1021 
 case lmots_shake_n32_w4: 1022 
   lmots_signature_n32_p67  sig_n32_p67; 1023 
 case lmots_shake_n32_w8: 1024 
   lmots_signature_n32_p34  sig_n32_p34; 1025 
 case lmots_shake_n24_w1: 1026 
   lmots_signature_n24_p200 sig_n24_p200; 1027 
 case lmots_shake_n24_w2: 1028 
   lmots_signature_n24_p101 sig_n24_p101; 1029 
 case lmots_shake_n24_w4: 1030 
   lmots_signature_n24_p51  sig_n24_p51; 1031 
 case lmots_shake_n24_w8: 1032 
   lmots_signature_n24_p26  sig_n24_p26; 1033 
}; 1034 
 1035 
/* hash-based signatures (hbs) */ 1036 
 1037 
enum lms_algorithm_type { 1038 
  lms_sha256_n24_h5  = TBD, 1039 
  lms_sha256_n24_h10 = TBD, 1040 
  lms_sha256_n24_h15 = TBD, 1041 
  lms_sha256_n24_h20 = TBD, 1042 
  lms_sha256_n24_h25 = TBD, 1043 
  lms_shake_n32_h5   = TBD, 1044 
  lms_shake_n32_h10  = TBD, 1045 
  lms_shake_n32_h15  = TBD, 1046 
  lms_shake_n32_h20  = TBD, 1047 
  lms_shake_n32_h25  = TBD, 1048 
  lms_shake_n24_h5   = TBD, 1049 
  lms_shake_n24_h10  = TBD, 1050 
  lms_shake_n24_h15  = TBD, 1051 
  lms_shake_n24_h20  = TBD, 1052 
  lms_shake_n24_h25  = TBD 1053 
}; 1054 
 1055 
/* leighton-micali signatures (lms) */ 1056 
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 1057 
union lms_path switch (lms_algorithm_type type) { 1058 
 case lms_sha256_n24_h5: 1059 
 case lms_shake_n24_h5: 1060 
   bytestring24 path_n24_h5[5]; 1061 
 case lms_sha256_n24_h10: 1062 
 case lms_shake_n24_h10: 1063 
   bytestring24 path_n24_h10[10]; 1064 
 case lms_sha256_n24_h15: 1065 
 case lms_shake_n24_h15: 1066 
   bytestring24 path_n24_h15[15]; 1067 
 case lms_sha256_n24_h20: 1068 
 case lms_shake_n24_h20: 1069 
   bytestring24 path_n24_h20[20]; 1070 
 case lms_sha256_n24_h25: 1071 
 case lms_shake_n24_h25: 1072 
   bytestring24 path_n24_h25[25]; 1073 
 1074 
 case lms_shake_n32_h5: 1075 
   bytestring32 path_n32_h5[5]; 1076 
 case lms_shake_n32_h10: 1077 
   bytestring32 path_n32_h10[10]; 1078 
 case lms_shake_n32_h15: 1079 
   bytestring32 path_n32_h15[15]; 1080 
 case lms_shake_n32_h20: 1081 
   bytestring32 path_n32_h20[20]; 1082 
 case lms_shake_n32_h25: 1083 
   bytestring32 path_n32_h25[25]; 1084 
}; 1085 
 1086 
struct lms_key_n24 { 1087 
  lmots_algorithm_type ots_alg_type; 1088 
  opaque I[16]; 1089 
  opaque K[24]; 1090 
}; 1091 
 1092 
union lms_public_key switch (lms_algorithm_type type) { 1093 
 case lms_sha256_n24_h5: 1094 
 case lms_sha256_n24_h10: 1095 
 case lms_sha256_n24_h15: 1096 
 case lms_sha256_n24_h20: 1097 
 case lms_sha256_n24_h25: 1098 
 case lms_shake_n24_h5: 1099 
 case lms_shake_n24_h10: 1100 
 case lms_shake_n24_h15: 1101 
 case lms_shake_n24_h20: 1102 
 case lms_shake_n24_h25: 1103 
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      lms_key_n24 z_n24; 1104 
 1105 
 case lms_shake_n32_h5: 1106 
 case lms_shake_n32_h10: 1107 
 case lms_shake_n32_h15: 1108 
 case lms_shake_n32_h20: 1109 
 case lms_shake_n32_h25: 1110 
      lms_key_n32 z_n32; 1111 
}; 1112 

  1113 
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Appendix B—XMSS XDR Syntax Additions 1114 

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR 1115 
syntax in Appendices A, B, and C of [1] is extended as follows. For data structures of type enum 1116 
or union below, the values or case statements specified in this appendix are to be added to the 1117 
ones specified in Appendices A, B, and C of [1]. 1118 

B.1 WOTS+ 1119 

/* ots_algorithm_type identifies a particular 1120 
   signature algorithm */ 1121 
 1122 
enum ots_algorithm_type { 1123 
  wotsp-sha2_192     = TBD, 1124 
  wotsp-shake256_256 = TBD, 1125 
  wotsp-shake256_192 = TBD, 1126 
}; 1127 

 1128 
/* Byte strings */ 1129 
 1130 
typedef opaque bytestring24[24]; 1131 
 1132 
union ots_signature switch (ots_algorithm_type type) { 1133 
 1134 
  case wotsp-sha2_192: 1135 
  case wotsp-shake256_192: 1136 
    bytestring24 ots_sig_n24_len51[51]; 1137 
 1138 
  case wotsp-shake256_256: 1139 
    bytestring32 ots_sig_n32_len67[67]; 1140 
}; 1141 
 1142 
union ots_pubkey switch (ots_algorithm_type type) { 1143 
  case wotsp-sha2_192: 1144 
  case wotsp-shake256_192: 1145 
    bytestring24 ots_pubk_n24_len51[51]; 1146 
 1147 
  case wotsp-shake256_256: 1148 
    bytestring32 ots_pubk_n32_len67[67]; 1149 
}; 1150 

B.2 XMSS 1151 

/* Definition of parameter sets */ 1152 
 1153 
enum xmss_algorithm_type { 1154 
  xmss-sha2_10_192      = TBD, 1155 
  xmss-sha2_16_192      = TBD, 1156 
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  xmss-sha2_20_192      = TBD, 1157 
 1158 
  xmss-shake256_10_256  = TBD, 1159 
  xmss-shake256_16_256  = TBD, 1160 
  xmss-shake256_20_256  = TBD, 1161 
 1162 
  xmss-shake256_10_192  = TBD, 1163 
  xmss-shake256_16_192  = TBD, 1164 
  xmss-shake256_20_192  = TBD, 1165 
}; 1166 
 1167 
/* Authentication path types */ 1168 
 1169 
union xmss_path switch (xmss_algorithm_type type) { 1170 
  case xmss-sha2_10_192: 1171 
  case xmss-shake256_10_192: 1172 
    bytestring24 path_n24_t10[10]; 1173 
 1174 
  case xmss-shake256_10_256: 1175 
    bytestring32 path_n32_t10[10]; 1176 
 1177 
  case xmss-sha2_16_192: 1178 
  case xmss-shake256_16_192: 1179 
    bytestring24 path_n24_t16[16]; 1180 
 1181 
  case xmss-shake256_16_256: 1182 
    bytestring32 path_n32_t16[16]; 1183 
 1184 
  case xmss-sha2_20_192: 1185 
  case xmss-shake256_20_192: 1186 
    bytestring24 path_n24_t20[20]; 1187 
 1188 
  case xmss-shake256_20_256: 1189 
    bytestring32 path_n32_t20[20]; 1190 
}; 1191 
 1192 
/* Types for XMSS random strings */ 1193 
 1194 
union random_string_xmss switch (xmss_algorithm_type type) { 1195 
  case xmss-sha2_10_192: 1196 
  case xmss-sha2_16_192: 1197 
  case xmss-sha2_20_192: 1198 
  case xmss-shake256_10_192: 1199 
  case xmss-shake256_16_192: 1200 
  case xmss-shake256_20_192: 1201 
    bytestring24 rand_n24; 1202 
 1203 
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  case xmss-shake256_10_256: 1204 
  case xmss-shake256_16_256: 1205 
  case xmss-shake256_20_256: 1206 
    bytestring32 rand_n32; 1207 
}; 1208 
 1209 
/* Corresponding WOTS+ type for given XMSS type */ 1210 
 1211 
union xmss_ots_signature switch (xmss_algorithm_type type) { 1212 
  case xmss-sha2_10_192: 1213 
  case xmss-sha2_16_192: 1214 
  case xmss-sha2_20_192: 1215 
    wotsp-sha2_192; 1216 
 1217 
  case xmss-shake256_10_256: 1218 
  case xmss-shake256_16_256: 1219 
  case xmss-shake256_20_256: 1220 
    wotsp-shake256_256; 1221 
 1222 
  case xmss-shake256_10_192: 1223 
  case xmss-shake256_16_192: 1224 
  case xmss-shake256_20_192: 1225 
    wotsp-shake256_192; 1226 
}; 1227 
 1228 
/* Types for bitmask seed */ 1229 
 1230 
union seed switch (xmss_algorithm_type type) { 1231 
  case xmss-sha2_10_192: 1232 
  case xmss-sha2_16_192: 1233 
  case xmss-sha2_20_192: 1234 
  case xmss-shake256_10_192: 1235 
  case xmss-shake256_16_192: 1236 
  case xmss-shake256_20_192: 1237 
    bytestring24 seed_n24; 1238 
 1239 
  case xmss-shake256_10_256: 1240 
  case xmss-shake256_16_256: 1241 
  case xmss-shake256_20_256: 1242 
    bytestring32 seed_n32; 1243 
}; 1244 
 1245 
/* Types for XMSS root node */ 1246 
 1247 
union xmss_root switch (xmss_algorithm_type type) { 1248 
  case xmss-sha2_10_192: 1249 
  case xmss-sha2_16_192: 1250 
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  case xmss-sha2_20_192: 1251 
  case xmss-shake256_10_192: 1252 
  case xmss-shake256_16_192: 1253 
  case xmss-shake256_20_192: 1254 
    bytestring24 root_n24; 1255 
 1256 
  case xmss-shake256_10_256: 1257 
  case xmss-shake256_16_256: 1258 
  case xmss-shake256_20_256: 1259 
    bytestring32 root_n32; 1260 
}; 1261 

B.3 XMSSMT 1262 

/* Definition of parameter sets */ 1263 
 1264 
enum xmssmt_algorithm_type { 1265 
 1266 
  xmssmt-sha2_20/2_192      = TBD, 1267 
  xmssmt-sha2_20/4_192      = TBD, 1268 
  xmssmt-sha2_40/2_192      = TBD, 1269 
  xmssmt-sha2_40/4_192      = TBD, 1270 
  xmssmt-sha2_40/8_192      = TBD, 1271 
  xmssmt-sha2_60/3_192      = TBD, 1272 
  xmssmt-sha2_60/6_192      = TBD, 1273 
  xmssmt-sha2_60/12_192     = TBD, 1274 
 1275 
  xmssmt-shake256_20/2_256  = TBD, 1276 
  xmssmt-shake256_20/4_256  = TBD, 1277 
  xmssmt-shake256_40/2_256  = TBD, 1278 
  xmssmt-shake256_40/4_256  = TBD, 1279 
  xmssmt-shake256_40/8_256  = TBD, 1280 
  xmssmt-shake256_60/3_256  = TBD, 1281 
  xmssmt-shake256_60/6_256  = TBD, 1282 
  xmssmt-shake256_60/12_256 = TBD, 1283 
 1284 
  xmssmt-shake256_20/2_192  = TBD, 1285 
  xmssmt-shake256_20/4_192  = TBD, 1286 
  xmssmt-shake256_40/2_192  = TBD, 1287 
  xmssmt-shake256_40/4_192  = TBD, 1288 
  xmssmt-shake256_40/8_192  = TBD, 1289 
  xmssmt-shake256_60/3_192  = TBD, 1290 
  xmssmt-shake256_60/6_192  = TBD, 1291 
  xmssmt-shake256_60/12_192 = TBD, 1292 
}; 1293 
 1294 
/* Type for XMSS^MT key pair index */ 1295 
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/* Depends solely on h */ 1296 
 1297 
union idx_sig_xmssmt switch (xmss_algorithm_type type) { 1298 
  case xmssmt-sha2_20/2_192: 1299 
  case xmssmt-sha2_20/4_192: 1300 
  case xmssmt-shake256_20/2_256: 1301 
  case xmssmt-shake256_20/4_256: 1302 
  case xmssmt-shake256_20/2_192: 1303 
  case xmssmt-shake256_20/4_192: 1304 
    bytestring3 idx3; 1305 
 1306 
  case xmssmt-sha2_40/2_192: 1307 
  case xmssmt-sha2_40/4_192: 1308 
  case xmssmt-sha2_40/8_192: 1309 
  case xmssmt-shake256_40/2_256: 1310 
  case xmssmt-shake256_40/4_256: 1311 
  case xmssmt-shake256_40/8_256: 1312 
  case xmssmt-shake256_40/2_192: 1313 
  case xmssmt-shake256_40/4_192: 1314 
  case xmssmt-shake256_40/8_192: 1315 
    bytestring5 idx5; 1316 
 1317 
  case xmssmt-sha2_60/3_192: 1318 
  case xmssmt-sha2_60/6_192: 1319 
  case xmssmt-sha2_60/12_192: 1320 
  case xmssmt-shake256_60/3_256: 1321 
  case xmssmt-shake256_60/6_256: 1322 
  case xmssmt-shake256_60/12_256: 1323 
  case xmssmt-shake256_60/3_192: 1324 
  case xmssmt-shake256_60/6_192: 1325 
  case xmssmt-shake256_60/12_192: 1326 
    bytestring8 idx8; 1327 
}; 1328 
 1329 
union random_string_xmssmt switch (xmssmt_algorithm_type type) { 1330 
  case xmssmt-sha2_20/2_192: 1331 
  case xmssmt-sha2_20/4_192: 1332 
  case xmssmt-sha2_40/2_192: 1333 
  case xmssmt-sha2_40/4_192: 1334 
  case xmssmt-sha2_40/8_192: 1335 
  case xmssmt-sha2_60/3_192: 1336 
  case xmssmt-sha2_60/6_192: 1337 
  case xmssmt-sha2_60/12_192: 1338 
  case xmssmt-shake256_20/2_192: 1339 
  case xmssmt-shake256_20/4_192: 1340 
  case xmssmt-shake256_40/2_192: 1341 
  case xmssmt-shake256_40/4_192: 1342 
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  case xmssmt-shake256_40/8_192: 1343 
  case xmssmt-shake256_60/3_192: 1344 
  case xmssmt-shake256_60/6_192: 1345 
  case xmssmt-shake256_60/12_192: 1346 
    bytestring24 rand_n24; 1347 
 1348 
  case xmssmt-shake256_20/2_256: 1349 
  case xmssmt-shake256_20/4_256: 1350 
  case xmssmt-shake256_40/2_256: 1351 
  case xmssmt-shake256_40/4_256: 1352 
  case xmssmt-shake256_40/8_256: 1353 
  case xmssmt-shake256_60/3_256: 1354 
  case xmssmt-shake256_60/6_256: 1355 
  case xmssmt-shake256_60/12_256: 1356 
    bytestring32 rand_n32; 1357 
}; 1358 
 1359 
/* Type for reduced XMSS signatures */ 1360 
 1361 
union xmss_reduced (xmss_algorithm_type type) { 1362 
  case xmssmt-sha2_20/2_192: 1363 
  case xmssmt-sha2_40/4_192: 1364 
  case xmssmt-sha2_60/6_192: 1365 
  case xmssmt-shake256_20/2_192: 1366 
  case xmssmt-shake256_40/4_192: 1367 
  case xmssmt-shake256_60/6_192: 1368 
    bytestring24 xmss_reduced_n24_t61[61]; 1369 
 1370 
  case xmssmt-sha2_20/4_192: 1371 
  case xmssmt-sha2_40/8_192: 1372 
  case xmssmt-sha2_60/12_192: 1373 
  case xmssmt-shake256_20/4_192: 1374 
  case xmssmt-shake256_40/8_192: 1375 
  case xmssmt-shake256_60/12_192: 1376 
    bytestring24 xmss_reduced_n24_t56[56]; 1377 
 1378 
  case xmssmt-sha2_40/2_192: 1379 
  case xmssmt-sha2_60/3_192: 1380 
  case xmssmt-shake256_40/2_192: 1381 
  case xmssmt-shake256_60/3_192: 1382 
    bytestring24 xmss_reduced_n24_t71[71]; 1383 
 1384 
  case xmssmt-shake256_20/2_256: 1385 
  case xmssmt-shake256_40/4_256: 1386 
  case xmssmt-shake256_60/6_256: 1387 
    bytestring32 xmss_reduced_n32_t77[77]; 1388 
 1389 
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  case xmssmt-shake256_20/4_256: 1390 
  case xmssmt-shake256_40/8_256: 1391 
  case xmssmt-shake256_60/12_256: 1392 
    bytestring32 xmss_reduced_n32_t72[72]; 1393 
 1394 
  case xmssmt-shake256_40/2_256: 1395 
  case xmssmt-shake256_60/3_256: 1396 
    bytestring32 xmss_reduced_n32_t87[87]; 1397 
}; 1398 
 1399 
/* xmss_reduced_array depends on d */ 1400 
 1401 
union xmss_reduced_array (xmss_algorithm_type type) { 1402 
  case xmssmt-sha2_20/2_192: 1403 
  case xmssmt-sha2_40/2_192: 1404 
  case xmssmt-shake256_20/2_256: 1405 
  case xmssmt-shake256_40/2_256: 1406 
  case xmssmt-shake256_20/2_192: 1407 
  case xmssmt-shake256_40/2_192: 1408 
    xmss_reduced xmss_red_arr_d2[2];  1409 
 1410 
  case xmssmt-sha2_60/3_192: 1411 
  case xmssmt-shake256_60/3_256: 1412 
  case xmssmt-shake256_60/3_192: 1413 
    xmss_reduced xmss_red_arr_d3[3]; 1414 
 1415 
  case xmssmt-sha2_20/4_192: 1416 
  case xmssmt-sha2_40/4_192: 1417 
  case xmssmt-shake256_20/4_256: 1418 
  case xmssmt-shake256_40/4_256: 1419 
  case xmssmt-shake256_20/4_192: 1420 
  case xmssmt-shake256_40/4_192: 1421 
    xmss_reduced xmss_red_arr_d4[4]; 1422 
 1423 
  case xmssmt-sha2_60/6_192: 1424 
  case xmssmt-shake256_60/6_256: 1425 
  case xmssmt-shake256_60/6_192: 1426 
    xmss_reduced xmss_red_arr_d6[6]; 1427 
 1428 
  case xmssmt-sha2_40/8_192: 1429 
  case xmssmt-shake256_40/8_256: 1430 
  case xmssmt-shake256_40/8_192: 1431 
    xmss_reduced xmss_red_arr_d8[8]; 1432 
 1433 
  case xmssmt-sha2_60/12_192: 1434 
  case xmssmt-shake256_60/12_256: 1435 
  case xmssmt-shake256_60/12_192: 1436 
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    xmss_reduced xmss_red_arr_d12[12]; 1437 
}; 1438 
 1439 
/* Types for bitmask seed */ 1440 
 1441 
union seed switch (xmssmt_algorithm_type type) { 1442 
  case xmssmt-sha2_20/2_192: 1443 
  case xmssmt-sha2_20/4_192: 1444 
  case xmssmt-sha2_40/2_192: 1445 
  case xmssmt-sha2_40/4_192: 1446 
  case xmssmt-sha2_40/8_192: 1447 
  case xmssmt-sha2_60/3_192: 1448 
  case xmssmt-sha2_60/6_192: 1449 
  case xmssmt-sha2_60/12_192: 1450 
  case xmssmt-shake256_20/2_192: 1451 
  case xmssmt-shake256_20/4_192: 1452 
  case xmssmt-shake256_40/2_192: 1453 
  case xmssmt-shake256_40/4_192: 1454 
  case xmssmt-shake256_40/8_192: 1455 
  case xmssmt-shake256_60/3_192: 1456 
  case xmssmt-shake256_60/6_192: 1457 
  case xmssmt-shake256_60/12_192: 1458 
    bytestring24 seed_n24; 1459 
 1460 
  case xmssmt-shake256_20/2_256: 1461 
  case xmssmt-shake256_20/4_256: 1462 
  case xmssmt-shake256_40/2_256: 1463 
  case xmssmt-shake256_40/4_256: 1464 
  case xmssmt-shake256_40/8_256: 1465 
  case xmssmt-shake256_60/3_256: 1466 
  case xmssmt-shake256_60/6_256: 1467 
  case xmssmt-shake256_60/12_256: 1468 
    bytestring32 seed_n32; 1469 
 1470 
}; 1471 
 1472 
/* Types for XMSS^MT root node */ 1473 
 1474 
union xmssmt_root switch (xmssmt_algorithm_type type) { 1475 
  case xmssmt-sha2_20/2_192: 1476 
  case xmssmt-sha2_20/4_192: 1477 
  case xmssmt-sha2_40/2_192: 1478 
  case xmssmt-sha2_40/4_192: 1479 
  case xmssmt-sha2_40/8_192: 1480 
  case xmssmt-sha2_60/3_192: 1481 
  case xmssmt-sha2_60/6_192: 1482 
  case xmssmt-sha2_60/12_192: 1483 



NIST SP 800-208 (DRAFT)  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

49 

 
 

 
 

 
 

 
 

 

 

  case xmssmt-shake256_20/2_192: 1484 
  case xmssmt-shake256_20/4_192: 1485 
  case xmssmt-shake256_40/2_192: 1486 
  case xmssmt-shake256_40/4_192: 1487 
  case xmssmt-shake256_40/8_192: 1488 
  case xmssmt-shake256_60/3_192: 1489 
  case xmssmt-shake256_60/6_192: 1490 
  case xmssmt-shake256_60/12_192: 1491 
    bytestring24 root_n24; 1492 
 1493 
  case xmssmt-shake256_20/2_256: 1494 
  case xmssmt-shake256_20/4_256: 1495 
  case xmssmt-shake256_40/2_256: 1496 
  case xmssmt-shake256_40/4_256: 1497 
  case xmssmt-shake256_40/8_256: 1498 
  case xmssmt-shake256_60/3_256: 1499 
  case xmssmt-shake256_60/6_256: 1500 
  case xmssmt-shake256_60/12_256: 1501 
    bytestring32 root_n32; 1502 
}; 1503 

  1504 
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Appendix C—Provable Security Analysis 1505 

This appendix briefly summarizes the formal security model and proofs of security of the LMS 1506 
and XMSS signature schemes and provides a short discussion comparing these models and 1507 
proofs. 1508 

C.1 The Random Oracle Model 1509 

In the random oracle model (ROM), there is a publicly accessible random oracle that both the 1510 
user and the adversary can send queries to and receive responses from at any time. A random 1511 
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules: 1512 

1. Every time the algorithm H receives a new input string s, it generates an output t 1513 
uniformly at random from its output space and returns the response t. The algorithm H 1514 
then records the pair (s, t) for future use. 1515 

2. If the algorithm H is ever queried in the future with some prior input s, it will always 1516 
return the same output t according to its recorded memory. 1517 

Alternatively, the random oracle H can be described as a non-interactive but exponentially large 1518 
look-up table initialized with truly random outputs t for each possible input string s. 1519 

To say that a cryptographic security proof is done in the random oracle model means that every 1520 
use of a particular function (for example, in the case here, the compression function that is used 1521 
to perform hashes) is replaced by a query to the random oracle H. This simplifies security claims 1522 
as, for example, it becomes easy to prove upper bounds on the likelihood of producing a second 1523 
preimage within a fixed number of queries to H. On the other hand, (compression) functions in 1524 
the real world are neither interactive nor have exponentially large descriptions, so they cannot 1525 
truly behave like a random oracle. 1526 

It is therefore desirable to have a cryptographic security proof that avoids using the random 1527 
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet 1528 
known how to perform a proof without appealing to the random oracle model, or both. So, as a 1529 
matter of real-world pragmatism, the ROM is commonly used. 1530 

C.2 The Quantum Random Oracle Model 1531 

The quantum random oracle model (QROM) is similar to the ROM, except it is additionally 1532 
assumed that all parties (in particular, the adversary) have quantum computers and can query the 1533 
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a 1534 
compression function or similar, as per the cryptosystem’s specification.) While this complicates 1535 
security claims as compared to the ROM, it more accurately models the power of an adversary 1536 
that has access to a large-scale quantum device for its cryptanalysis when attacking a real-world 1537 
scheme. 1538 

C.3 LMS Security Proof 1539 

In [11], the author considers a particular experiment in the random oracle model in which the 1540 
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adversary is given a series of strings with prefixes (in a randomly chosen but structured manner) 1541 
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash 1542 
target as any of its input strings. The author proves an upper bound on the adversary’s ability to 1543 
compute first or second preimages from these strings (by querying the compression function 1544 
modeled as a random oracle). 1545 

Then, the author reduces the problem of forging a signature in LMS to this stated experiment, 1546 
concluding that the same upper bounds apply to the problem of producing forgeries against 1547 
LMS. This random oracle model proof critically depends on the randomness of the prefixes used 1548 
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of 1549 
the prefixes. 1550 

Further, in [15], the same proof is carried out in the QROM. 1551 

C.4 XMSS Security Proof 1552 

In [12], a security analysis for the original (academic publication) version of XMSS is given 1553 
under the following assumptions: 1554 

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This 1555 
means that if the bit string k is chosen uniformly at random, then an adversary given 1556 
black-box access to the function fk cannot distinguish this black box from a random 1557 
function within a polynomial number of queries (except with negligible probability). 1558 

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings 1559 
k and m are chosen uniformly at random, then an adversary given k and m cannot 1560 
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible 1561 
probability). 1562 

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially 1563 
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model. 1564 

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the 1565 
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is 1566 
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to 1567 
the QROM. 1568 

In a little more detail, the current version of XMSS uses two types of assumptions: 1569 

1. A standard model assumption – that the hash function hk, used for the one-time signatures 1570 
and tree node computations, is post-quantum, multi-function, multi-target decisional 1571 
second- preimage-resistant. 1572 

2. A (quantum) random oracle model assumption – that the pseudorandom function fk, used 1573 
to generate pseudorandom values for randomized hashing and computing bitmasks as 1574 
blinding keys, may be validly modeled as a quantum random oracle H. 1575 
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C.5 Comparison of the Security Models and Proofs of LMS and XMSS 1576 

Generally speaking, both LMS and XMSS are supported by sound security proofs under 1577 
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions 1578 
are true, then both schemes are provably shown to be existentially unforgeable under chosen 1579 
message attack, even against an adversary that has access to a large-scale quantum computer for 1580 
use in its forgery attack. 1581 

The main difference between these schemes’ security analyses comes down to the use (and the 1582 
degree of use) of the random oracle or quantum random oracle models. Along these lines, the 1583 
difference between the (standard model/real world) cryptographic assumption that some function 1584 
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a 1585 
function fk to be a pseudorandom function in the real world, it should be the case that the bit 1586 
string k used as the key to the function remains private, meaning that it is not in the view of the 1587 
adversary at any point of the security experiment. On the other hand, a random oracle H achieves 1588 
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but 1589 
there is no key k necessarily associated with the random oracle. Indeed, all inputs to the random 1590 
oracle H may be known to all parties and, in particular, to the adversary. Therefore, using the 1591 
random oracle model clearly involves making a stronger assumption about the (limits of the) 1592 
cryptanalytic power of the adversary. 1593 

That said, a security proof is either entirely a “real world proof,” which does not use the random 1594 
oracle model, or it appeals to the random oracle methodology in some manner. The security 1595 
analysis of the current version of XMSS only uses the random oracle H when performing 1596 
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a 1597 
greater degree (modeling the compression function as a random oracle). However, it remains the 1598 
case that both schemes in their modern form are ultimately proven secure using the ROM and 1599 
QROM. 1600 

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve 1601 
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as 1602 
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s 1603 
decision to deploy one scheme or the other should primarily depend on other factors, such as the 1604 
efficiency demands for a given deployment environment or the other security considerations 1605 
enumerated earlier in this document. 1606 




