
From: Dworkin, Morris J. (Fed)
To: Cooper, David (Fed); Dang, Quynh H. (Fed); Davidson, Michael S. (Fed); Miller, Carl A. (Fed);
Subject: FW: Draft summary for PQC team
Date: Thursday, June 4, 2020 3:09:33 PM
Attachments: llc-NIST SP on stateful HBS 20200501.docx

I used the Sharepoint interface to send Lily’s comments (below, and in the attachedfile) yesterday,
forgetting that you might not see it that way.

So let’s not meet tomorrow, but plan to check in Tuesday at 1:00. I sent a calendar invitation.

Morrie

From: "Dworkin, Morris J. (Fed)" <morris.dworkin@nist.gov>
Date: Wednesday, June 3, 2020 at 10:04 AM
To: Stateful Hash-Based Signatures <StatefulHash-
BasedSignatures@nistgov.onmicrosoft.com>
Subject: FW: Draft summary for PQC team

Good morning,

FYI, here are Lily’s comments. John has told me that he’s still working on his.

Since there’s no full team meeting, I’m thinking we can check in with a teleconference at 10 on
Friday?

Morrie

From: "Chen, Lily (Fed)" <lily.chen@nist.gov>
Date: Tuesday, June 2, 2020 at 4:07 PM
To: "Dworkin, Morris J. (Fed)" <morris.dworkin@nist.gov>
Subject: Re: Draft summary for PQC team

Hi, Morrie,

The document is well written. I agree with the resolutions the WG proposed on the public
comments. I have a few very minor editorial comments as attached. It is not an easy task to have a
Recommendation based on IETF RFCs w.r.t. what should be included in this Recommendation. Most
of my comments are on whether to refer or to give a short explanation in this document. If you have
question, please let me know.

Thanks,
Lily

(b) (6)

From: Morris Dworkin <morris.dworkin@nist.gov>
Date: Monday, May 4, 2020 at 9:14 AM
To: internal-pqc <internal-pqc@nist.gov>
Subject: FW: Draft summary for PQC team

On behalf of the internal working group for stateful hash-based signatures, I am
attaching for your review 1) our proposed responses to the public comments that we
received on Draft SP 800-208, and 2) the revision of the draft SP, both a Word file with
the changes tracked and a clean PDF file. If you have any comments on the
documents, please send them to me by Friday, May 15, or let me know if you would
like extra time.

Below is a summary of the main issues we considered.

Regards,

Morrie

Technical:

1. Many commenters objected to the prohibition against the exporting of
private keys from the module. The WG strongly recommends that the
prohibition be maintained. The revised SP clarifies that even encrypted
keys may not be exported—see Thales’s Comment 10.

2. ETSI’s comments included a multi-target attack on XMSS key generation--
see Page 19 of public comment document, referring to Line 576 of the draft
SP. The revised draft mandates a new key generation function to address
the attack. David notified the XMSS designers of the proposal, and they did
not object.

3. Kampanakis (Cisco) and Google requested Level 1 parameter sets, i.e., with
128-bit hash values. The WG recommends against this change but did not
reach a consensus on the formal response to the comments. In particular, it
is difficult to justify why the draft SP went beyond the RFCs in specifying
Level 3 parameter sets, i.e., 192-bit hash values, but not all the way to
Level 1. Feedback from the full PQC team would be helpful.

4. The draft SP “Notes to Reviewers” asked whether a method should be
specified for distributing a single Merkle tree across multiple modules,
without violating the prohibition on key export, in order to shorten
signatures compared to multi-tree implementations. Since no commenters
requested the method, the WG decided not to provide it.

5. The Notes to Reviewers also asked about the appropriateness of the
specified parameter sets. No commenter advocated for removal of any
specific parameter sets, and the Level 1 parameter sets—discussed in 4)

above—were the only new sets specifically requested. A couple of
commenters requested that the parameter sets for HSS and XMSS^MT be
harmonized, but no specific proposals were provided, and the WG didn’t
agree that the harmonization would be very beneficial.

6. The WG did not agree with Huelsing’s suggestion to provide a method for
forward-secure key generation.

7. The WG did not agree with NSA’s suggestion to provide parameter sets
with SHA-384 and SHA 512, nor Thales’s suggestion (Comment 7) to
allow a block cipher-based replacement for the hash function.

8. The revised SP clarifies that a “one-time" signature may not be re-generated
on the same message; the WG decided that an entire subsection on fault
injection attacks was therefore unnecessary.

9. The revised SP requires that the entropy source for any random bit
generation be located inside the physical boundary of the module.

Editorial
10. Subsection 2.3 (Mathematical Symbols) was expanded to include

the variables from the schemes that were discussed elsewhere in the
SP.

11. An underlying assumption in the description of the security proof for
XMSS was corrected.

12. In response to Yi-Kai’s comments before the release of the draft SP, a brief
discussion of the difficulty of key revocation is provided in Subsection 9.3.

13. The WG did not agree with Thales’s suggestion (Comment 4) to provide a
comparison of performance data as guidance for selecting one of the two
schemes.

Draft NIST Special Publication 800-208 1

 2

Recommendation for Stateful 3

Hash-Based Signature Schemes 4

 5

David A. Cooper 6
Daniel C. Apon 7
Quynh H. Dang 8

Michael S. Davidson 9
Morris J. Dworkin 10

Carl A. Miller 11
 12

 13

 14
This publication is available free of charge from: 15

https://doi.org/10.6028/NIST.SP.800-208-draft 16
 17

 18

 19

20

C O M P U T E R S E C U R I T Y

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

ii

Reports on Computer Systems Technology 92

The Information Technology Laboratory (ITL) at the National Institute of Standards and 93
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 94
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 95
methods, reference data, proof of concept implementations, and technical analyses to advance the 96
development and productive use of information technology. ITL’s responsibilities include the 97
development of management, administrative, technical, and physical standards and guidelines for 98
the cost-effective security and privacy of other than national security-related information in federal 99
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 100
outreach efforts in information system security, and its collaborative activities with industry, 101
government, and academic organizations. 102

Abstract 103

This recommendation specifies two algorithms that can be used to generate a digital signature, 104
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS) 105
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants, 106
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT). 107

 Keywords 108

cryptography; digital signatures; hash-based signatures; public-key cryptography. 109

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iii

Document Conventions 110

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to 111
conform to the publication and from which no deviation is permitted. 112

The terms “should” and “should not” indicate that among several possibilities one is 113
recommended as particularly suitable, without mentioning or excluding others, or that a certain 114
course of action is preferred but not necessarily required, or that (in the negative form) a certain 115
possibility or course of action is discouraged but not prohibited. 116

The terms “may” and “need not” indicate a course of action permissible within the limits of the 117
publication. 118

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical or 119
causal. 120

Conformance Testing 121

Conformance testing for implementations of the functions that are specified in this publication 122
will be conducted within the framework of the Cryptographic Algorithm Validation Program 123
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements on these 124
implementations are indicated by the word “shall.” Some of these requirements may be out-of-125
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, 126
implementing, installing, or configuring applications that incorporate this Recommendation. 127

Note to Reviewers 128

Sections 4 and 5 specify the parameter sets that are approved by this recommendation for LMS, 129
HSS, XMSS, and XMSSMT. Given the large number of parameter sets specified in these two 130
sections, NIST would like feedback on whether there would be a benefit in reducing the number 131
of parameter sets that are approved, and if so, which ones should be removed. 132

While this recommendation does not allow cryptographic modules to export private keying 133
material, Section 7 describes a way in which a single key pair can be created with the one time 134
keys being spread across multiple cryptographic modules. The method described in Section 7 135
involves creating a 2 level HSS or XMSSMT tree where the one time keys associated with each of 136
the bottom level trees can be created on a different cryptographic module. 137

NIST believes that it would be possible to create a one level XMSS or LMS tree in which the 138
one time keys are not all created and stored on the same cryptographic module. Key generation 139
would be more complicated to implement, though, as would be the steps that end users would 140
have to perform during the key generation process. However, a one-level tree would result in 141
shorter signatures. 142

NIST would like feedback on whether there is a need to be able to create one-level XMSS or 143
LMS keys in which the one-time keys are not all created and stored on the same cryptographic 144
module even though such an option would be more complicated to implement and use than the 145
two-level option that is already described in the draft. 146

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iv

Call for Patent Claims 147

This public review includes a call for information on essential patent claims (claims whose use 148
would be required for compliance with the guidance or requirements in this Information 149
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 150
directly stated in this ITL Publication or by reference to another publication. This call also 151
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 152
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 153

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 154
in written or electronic form, either: 155

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 156
does not currently intend holding any essential patent claim(s); or 157

b) assurance that a license to such essential patent claim(s) will be made available to applicants 158
desiring to utilize the license for the purpose of complying with the guidance or requirements 159
in this ITL draft publication either: 160

i) under reasonable terms and conditions that are demonstrably free of any unfair 161
discrimination; or 162

ii) without compensation and under reasonable terms and conditions that are demonstrably 163
free of any unfair discrimination. 164

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 165
on its behalf) will include in any documents transferring ownership of patents subject to the 166
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 167
the transferee, and that the transferee will similarly include appropriate provisions in the event of 168
future transfers with the goal of binding each successor-in-interest. 169

The assurance shall also indicate that it is intended to be binding on successors-in-interest 170
regardless of whether such provisions are included in the relevant transfer documents. 171

Such statements should be addressed to: pqc-comments@nist.gov 172

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

v

 173
Table of Contents 174

1 Introduction .. 1 175
1.1 Intended Applications for Stateful HBS Schemes ... 1 176
1.2 The Importance of the Proper Maintenance of State 1 177
1.3 Outline of Text... 2 178

2 Glossary of Terms, Acronyms, and Mathematical Symbols 4 179
2.1 Terms and Definitions ... 4 180
2.2 Acronyms .. 4 181
2.3 Mathematical Symbols .. 5 182

3 General Discussion .. 7 183
3.1 One-Time Signature Systems ... 7 184
3.2 Merkle Trees ... 8 185
3.3 Two-Level Trees ... 9 186
3.4 Prefixes and Bitmasks .. 10 187

4 Leighton-Micali Signatures (LMS) Parameter Sets ... 12 188
4.1 LMS with SHA-256 .. 12 189
4.2 LMS with SHA-256/192 ... 13 190
4.3 LMS with SHAKE256/256 ... 14 191
4.4 LMS with SHAKE256/192 ... 14 192

5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 16 193
5.1 XMSS and XMSSMT with SHA-256 ... 16 194
5.2 XMSS and XMSSMT with SHA-256/192 .. 17 195
5.3 XMSS and XMSSMT with SHAKE256/256 ... 18 196
5.4 XMSS and XMSSMT with SHAKE256/192 ... 19 197

6 Random Number Generation for Keys and Signatures 21 198
6.1 LMS and HSS Random Number Generation Requirements 21 199
6.2 XMSS and XMSSMT Random Number Generation Requirements 21 200

7 Distributed Multi-Tree Hash-Based Signatures ... 23 201
7.1 HSS .. 24 202
7.2 XMSSMT .. 24 203

7.2.1 Modified XMSS Key Generation and Signature Algorithms 25 204
7.2.2 XMSSMT External Device Operations ... 27 205

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vi

8 Conformance .. 29 206
8.1 Key Generation and Signature Generation ... 29 207
8.2 Signature Verification .. 30 208

9 Security Considerations .. 31 209
9.1 One-Time Signature Key Reuse ... 31 210
9.2 Hash Collisions ... 32 211
9.3 Revocation .. 33 212

References ... 34 213
 214

List of Appendices 215
Appendix A— LMS XDR Syntax Additions ... 37 216
Appendix B— XMSS XDR Syntax Additions ... 41 217

B.1 WOTS+ .. 41 218
B.2 XMSS .. 41 219
B.3 XMSSMT .. 44 220

Appendix C— Provable Security Analysis .. 50 221
C.1 The Random Oracle Model ... 50 222
C.2 The Quantum Random Oracle Model ... 50 223
C.3 LMS Security Proof ... 50 224
C.4 XMSS Security Proof .. 51 225
C.5 Comparison of the Security Models and Proofs of LMS and XMSS.............. 52 226

 227
List of Figures 228

Figure 1: A sample Winternitz chain for b = 4.. 7 229
Figure 2: A sample Winternitz signature generation and verification 8 230
Figure 3: A sample Winternitz signature .. 8 231
Figure 4: A Merkle Hash Tree ... 9 232
Figure 5: A two-Level Merkle tree ... 10 233
Figure 6: XMSS hash computation with prefix and bitmask .. 11 234
 235

List of Tables 236

Table 1: LM-OTS parameter sets for SHA-256 ... 12 237

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vii

Table 2: LMS parameter sets for SHA-256 ... 13 238
Table 3: LM-OTS parameter sets for SHA-256/192 .. 13 239
Table 4: LMS parameter sets for SHA-256/192 .. 13 240
Table 5: LM-OTS parameter sets for SHAKE256/256 ... 14 241
Table 6: LMS parameter sets for SHAKE256/256 ... 14 242
Table 7: LM-OTS parameter sets for SHAKE256/192 ... 14 243
Table 8: LMS parameter sets for SHAKE256/192 ... 15 244
Table 9: WOTS+ parameter sets ... 16 245
Table 10: XMSS parameter sets for SHA-256 ... 16 246
Table 11: XMSSMT parameter sets for SHA-256 ... 17 247
Table 12: XMSS parameter sets for SHA-256/192 .. 17 248
Table 13: XMSSMT parameter sets for SHA-256/192 .. 18 249
Table 14: XMSS parameter sets for SHAKE256/256 .. 18 250
Table 15: XMSSMT parameter sets for SHAKE256/256 ... 19 251
Table 16: XMSS parameter sets for SHAKE256/192 .. 19 252
Table 17: XMSSMT parameter sets for SHAKE256/192 ... 20 253

254

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

1

1 Introduction 255

This publication supplements FIPS 186-4 [4] by specifying two additional digital signature 256
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali 257
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with 258
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS 259
(XMSSMT). All of the digital signature schemes specified in FIPS 186-4 will be broken if large-260
scale quantum computers are ever built. The security of the stateful HBS schemes in this 261
publication, however, only depends on the security of the underlying hash functions—in 262
particular, the infeasibility of finding a preimage or a second preimage—and it is believed that 263
the security of hash functions will not be broken by the development of large-scale quantum 264
computers [20]. 265

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate 266
for use by the U.S. Federal Government. This profile approves the use of some but not all of the 267
parameter sets defined in [1] and [2] and also defines some new parameter sets. The approved 268
parameter sets use 192- or 256-bit outputs with either SHA-256 [3] or SHAKE256 [5] with 192 269
or 256 bit outputs. It requires that key and signature generation be performed in hardware 270
cryptographic modules that do not allow secret keying material to be exported, even in encrypted 271
form. 272

1.1 Intended Applications for Stateful HBS Schemes 273

NIST is in the process of developing standards for post-quantum secure digital signature 274
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful 275
HBS schemes are not suitable for general use because they require careful state management that 276
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8]. 277

Instead, stateful HBS schemes are primarily intended for applications with the following 278
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2) 279
the implementation will have a long lifetime; and 3) it would not be practical to transition to a 280
different digital signature scheme once the implementation has been deployed. 281

An application that may fit this profile is authenticating firmware updates for constrained 282
devices. Some constrained devices that will be deployed in the near future will be in use for 283
decades. These devices will need to have a secure mechanism for receiving firmware updates, 284
and it may not be practical to change the code for verifying signatures on updates once the 285
devices have been deployed. 286

1.2 The Importance of the Proper Maintenance of State 287

In a stateful HBS scheme, an HBS private key pair consists of a large set of one-time signature 288
(OTS) private key pairs. An HBS key pair may contain thousands, millions, or billions of OTS 289
keys, and the The signer needs to ensure that no individual OTS key is ever used to sign more 290
than one message. If an attacker were able to obtain digital signatures for two different messages 291
created using the same OTS key, then it would become computationally feasible for that attacker 292
to forge signatures on arbitrary messages [13]. Therefore, as described in [8], when a stateful 293
HBS scheme is implemented, extreme care needs to be taken in order to ensure that no OTS key 294

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

2

is ever reused. 295

In order to obtain assurance that OTS keys are not reused, the signing process should be 296
performed in a highly controlled environment. As described in [8], there are many ways in which 297
seemingly routine operations could lead to the risk of one-time key reuse. The conformance 298
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS 299
schemes are intended to help prevent one-time key reuse. 300

1.3 Outline of Text 301

The remainder of this document is divided into the following sections and appendices: 302

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms, 303
acronyms, and mathematical symbols used in this document. This section is informative. 304

• Section 3, General Discussion, gives a conceptual explanation of the elements used in 305
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash 306
prefixes). This section may be used as either a high-level overview of stateful hash-based 307
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS 308
provided in [1] and [2]. This section is informative. 309

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter 310
sets that are approved for use by this Special Publication with LMS and HSS. 311

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the 312
parameter sets that are approved for use by this Special Publication with XMSS and 313
XMSSMT. 314

• Section 6, Random Number Generation for Keys and Signatures, states how the random 315
data used in XMSS and LMS must be generated. 316

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for 317
distributing the implementation of a single HSS or XMSSMT instance over multiple 318
cryptographic modules. 319

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module 320
validation that are specific to modules that implement the algorithms in this document. 321

• Section 9, Security Considerations, enumerates security risks in various scenarios for 322
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that 323
should be taken to maximize the security of an implementation. This section is 324
informative. 325

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the 326
External Data Representation (XDR) syntax for LMS in order to support the new 327
parameter sets specified in this document. 328

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the 329
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified 330
in this document. 331

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

3

• Appendix C, Provable Security Analysis, provides information about the security proofs 332
that are available for LMS and XMSS. This section is informative. 333

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

4

2 Glossary of Terms, Acronyms, and Mathematical Symbols 334

2.1 Terms and Definitions 335

approved FIPS-approved or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, or 2)
adopted in a FIPS or NIST Recommendation and specified either (a)
in an appendix to the FIPS or NIST Recommendation, or (b) in a
document referenced by the FIPS or NIST Recommendation.

 336
2.2 Acronyms 337

Selected acronyms and abbreviations used in this publication are defined below. 338

EEPROM Electronically erasable programmable read-only memory

EUF-CMA Existential unforgeability under adaptive chosen message attacks

FIPS Federal Information Processing Standard

HBS Hash-based signature

HSS Hierarchical Signature Scheme

IRTF Internet Research Task Force

LM-OTS Leighton-Micali One-Time Signature

LMS Leighton-Micali signature

NIST National Institute of Standards and Technology

OTS One-time signature

QROM Quantum random oracle model

RAM Random access memory

RFC Request for Comments

ROM Random oracle model

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm KECCAK

SP Special publication

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

9

simply concatenating the keys together, the resulting public key would be unacceptably large. 388
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to 389
be very short in exchange for requiring a small amount of additional information to be provided 390
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the 391
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up. 392
Those hash values are then hashed together in pairs, the resulting hash values are hashed 393
together, and so on until all of the public keys have been used to generate a single hash value (the 394
root of the tree), which will be used as the long-term public key. 395

 396

Figure 4: A Merkle Hash Tree 397

Figure 3 depicts a hash tree containing eight OTS public keys (k0 … k7). The eight keys are each 398
hashed to form the leaves of the tree (h0 … h7), and the eight leaf values are hashed in pairs to 399
create the next level up in the tree (h01, h23, h45, h67). These four hash values are again hashed in 400
pairs to create h0−3 and h4−7, which are hashed together to create the long-term public key, h0−7. 401
In order for an entity that had already received h0−7 in a secure manner to verify a message 402
signed using k2, the signer would need to provide h3, h01, and h4−7 in addition to k2. The verifier 403
would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ = 𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′), and ℎ0−7′ =404
𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′ is the same as h0−7, then k2 may be used to verify the message signature. 405

3.3 Two-Level Trees 406

Both [1] and [2] define single tree as well as multi-tree variants of their signature schemes. In an 407
instance that involves two levels of trees, as shown in Figure 4, the OTS keys that form the 408
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that 409
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level 410
tree is the long-term public key for the signature scheme.3 411

3 While this section only describes two-level trees, HSS allows for up to eight levels of trees and XMSSMT allows for up to 12
levels of trees.

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

11

scheme. This address is then hashed along with a unique identifier (SEED) for the long-term 437
public key (SEED)to create the prefix. 438

Unlike LMS, XMSS also uses bitmasks. In addition to creating the prefix, a slightly different 439
address is also hashed along with the SEED to create a bitmask. The bitmask is then exclusive-440
ORed with the input before the input is hashed along with the prefix. Figure 5 illustrates an 441
example of this computation. In [1], the hash function is referred to as H, H_msg, F, or PRF, 442
depending on where it is being used. However, in each case it is the same function, just with a 443
different prefix prepended in order to ensure separation between the uses. 444

 445

Figure 6: XMSS hash computation with prefix and bitmask

⊕

3 || SEED || ADDR

3 || SEED || ADDR'

0 || prefix ||
inputMs

xk

H

H

H

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

22

for each XMSS key pair. 602

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

23

7 Distributed Multi-Tree Hash-Based Signatures 603

If a digital signature key will be used to generate signatures over a long period of time and 604
replacing the public key would be difficult, then storing the private key in multiple places to 605
protect against lossit will be necessary to prepare for the possibility that a cryptographic module 606
holding the private key may fail during the key’s lifetime. In the case of most digital signature 607
schemes, this just involves makinga common solution is to make copies of the private key. 608
However, in the case of stateful HBS schemes, simply copying the private key would create a 609
risk of OTS key reuse. 610

 An alternative that avoids this risk is to have multiple cryptographic modules that each generate 611
their own OTS keys and then create a single instance that includes all of the public keys from all 612
of the modules. 613

While it would also be possible to have one cryptographic module generate all of the OTS keys 614
and then distribute different OTS keys to each of the other cryptographic modules, doing so is 615
not an option for cryptographic modules conforming to this recommendation. D: due to the risks 616
associated with copying OTS keys, this recommendation prohibits exporting private keying 617
material (Section 8). 618

One option would be to create multiple stateful HBS keys on different cryptographic modules 619
and then configure clients to accept signatures created using any of these keys. These keys could 620
be distributed to clients all at once or a using mechanism such as the Hash Of Root Key 621
certificate extension [23], which provides a mechanism for distributing new public keys over 622
time. 623

Another option would be to create a single stateful HBS key in which the OTS private keys are 624
distributed across multiple cryptographic modules. The easiest way to have OTS keys on 625
multiple cryptographic modules without exporting private keys is to use HSS or XMSSMT with 626
two levels of trees where the each trees are is instantiated on a different cryptographic modules. 627
First, a top-level LMS or XMSS key pair would be created in a cryptographic module. The top 628
level’s OTS keys would only be used to sign the roots of other trees. Then, bottom-level LMS or 629
XMSS key pairs would be created in other cryptographic modules, and the public keys from 630
those key pairs (i.e., the roots of their Merkle trees) would be signed by OTS keys of the top-631
level key pair. The OTS keys of the bottom-level key pairs would be used to sign ordinary 632
messages. The number of bottom-level key pairs that could be created would only be limited by 633
the number of OTS keys in the top-level key pair. 634

As an example, suppose that an organization wishes to have a single XMSSMT key with the OTS 635
private keys being distributed across two cryptographic modules (in case one fails), and the 636
organization has determined that at most 10 000 signatures will need to be generated over the 637
lifetime of the XMSSMT key. The organization could create a top-level XMSS key pair on one 638
cryptographic module using the XMSSMT-SHA2 20/2 256 parameter set and could then create 639
10 bottom-level XMSS keys on that same cryptographic module. An additional 10 bottom-level 640
XMSS keys could be created on a second cryptographic module, with all 20 of the bottom-levels 641
keys being signed by OTS keys of the top-level key pair. 642

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

24

When working with distributed multi-tree hash-based signatures, the cryptographic module 643
holding the top-level tree is a potential single point of failure. Once this cryptographic module 644
fails it is no longer possible to sign the additional bottom-level key pairs. So, all of the bottom-645
level keys should be generated up-front as part of the initial key generation ceremony. Once the 646
top-level key has been used to sign all of the bottom-level keys, the top-level key is no longer 647
needed, as copies of the signatures created using OTS keys of the top-level key pair may be 648
stored outside of the cryptographic module. 649

In order to avoid the top-level key being a single point of failure, the two options described 650
above could be combined to create multiple distributed multi-tree HBS keys. Multiple top-level 651
keys pairs would initially be created, each on a different cryptographic module, and clients 652
would be configured to accept signatures created using any of these keys. Then, whenever a new 653
bottom-level key needed to be created, it could be signed by any one of the top-level keys. This 654
would allow for new bottom-level keys to be created as long as at least one of the cryptographic 655
modules containing a top-level key remained operational. Of course, the same level of care 656
should be used in signing a bottom-level key as would be used during the initial key generation 657
ceremony (or as would be used in making a copy of an RSA or ECDSA private key). 658

7.1 HSS 659

In the case of HSS, the distributed multi-tree scheme described above can be implemented using 660
multiple cryptographic modules that each implement LMS without modifications. The top-level 661
LMS public key can be converted to an HSS public key by an external, non-cryptographic 662
device. This device can also submit the public keys of the bottom-level LMS keys to be signed 663
by the top-level LMS key. In HSS, the operation for signing the root of a lower-level tree is the 664
same as the operation for signing an ordinary message. Finally, this external device can submit 665
ordinary messages to cryptographic modules holding the bottom-level LMS keys for signing and 666
then combine the resulting LMS signatures with the top-level key’s signature on the bottom-level 667
LMS public key in order to create the HSS signature for the ordinary messages (see Algorithm 668
78 and Algorithm 89 in [2]). 669

7.2 XMSSMT 670

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules 671
requires each cryptographic module to implement slightly modified versions of the XMSS key 672
and signature generation algorithms provided in [1]. The modified versions of these algorithms 673
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each 674
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes 675
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED 676
and that the root of the top-level tree is used when computing the hashes of messages to be 677
signed. 678

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF 679
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each 680
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF 681
for each cryptographic module does not exactly align with the specification in [1], doing so does 682
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate 683
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for 684

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

25

generating random values could be used to generate r. 685

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in 686
order to implement XMSSMT key and signature generation using a set of cryptographic modules 687
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1 688
have been designed to work with XMSSMT instances that have more than two layers, the 689
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being 690
created. 691

7.2.1 Modified XMSS Key Generation and Signature Algorithms 692

Algorithm 10': XMSS'_keyGen 693

 // L needs to be in the range [0 … d-1] 694
 // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1] 695
 Input: level L, tree t, 696
 public key of top-level tree PK_MT (if L ≠ d - 1) 697
 Output: XMSS public key PK 698

 Initialize S XMSS with an n-byte string using an approved 699
 random bit generator [6], where the instantiation of the 700
 random bit generator supports at least 8n bits of security 701
 strength; 702

 // SEED needs to be generated for the top-level XMSS key. 703
 // For all other XMSS keys, the value needs to be copied from 704
 // the top-level XMSS key. 705
 if (L = d – 1) { 706
 Initialize SEED with an n-byte string using an approved 707
 random bit generator [6], where the instantiation of the 708
 random bit generator supports at least 8n bits of security 709
 strength; 710
 } else { 711
 SEED = getSEED(PK MT); 712
 } 713
 setSEED(SK, SEED); 714

 ADRS = toByte(0, 32); 715
 ADRS.setLayerAddress(L); 716
 ADRS.setTreeAddress(t); 717

 // Example initialization for SK-specific contents 718
 idx = t * 2^(h / d); 719
 for (i = 0; i < 2^(h / d); i++) { 720
 ADRS.setOTSAddress(i); 721
 // For each OTS key, i, generate the private key value for 722
 // chain in the OTS key. 723
 for (j=0; j < len; j++) { 724

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

26

 ADRS.setChainAddress(j); 725
 sk[j] = PRFkeygen(S XMSS, SEED || ADRS); 726
 } 727
 // Set the secret key for OTS key i to the array of len 728
 // private key values generated for that key. 729
 wots_sk[i] = WOTS_genSK()sk; 730
 } 731
 setWOTS SK(SK, wots sk); 732

 Initialize SK_PRF with an n-byte string using an approved 733
 random bit generator [6], where the instantiation of the 734
 random bit generator supports at least 8n bits of security 735
 strength;. 736
 setSK_PRF(SK, SK_PRF); 737

 // SEED needs to be generated for the top-level XMSS key. 738
 // For all other XMSS keys, the value needs to be copied from 739
 // the top level XMSS key. 740
 if (L = d – 1) { 741
 Initialize SEED with an n-byte string using an approved 742
 random bit generator [6], where the instantiation of the 743
 random bit generator supports at least 8n bits of security 744
 strength;. 745
 } else { 746
 SEED = getSEED(PK_MT); 747
 } 748
 setSEED(SK, SEED); 749
 setWOTS_SK(SK, wots_sk); 750
 ADRS = toByte(0, 32); 751
 ADRS.setLayerAddress(L); 752
 ADRS.setTreeAddress(t); 753
 root = treeHash(SK, 0, h / d, ADRS); 754
 755
 setLayerAddress(SK, L); 756
 setTreeAddress(SK, t); 757
 setIdx(SK, idx); 758

 // The "root" value in SK needs to be the root of the top-level 759
 // XMSS tree, as this is the value used when hashing the message 760
 // to be signed. 761
 if (L = d – 1) { 762
 setRoot(SK, root); 763
 SK = L || t || idx || wots_sk || SK_PRF || root || SEED; 764
 } else { 765
 setRoot(SK, getRoot(PK MT)); 766
 SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED; 767
 } 768

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

27

 // The public key should be encoded using the XDR for 769
 // xmssmt public key in Appendix C.3 of [1], with the additions 770
 // specified in Appendix B.3 of this document. 771
 PK = OID || root || SEED; 772
 return PK; 773

Algorithm 12': XMSS'_sign 774

 Input: Message M 775
 Output: signature Sig 776

 idx_sig = getIdx(SK); 777
 setIdx(SK, idx_sig + 1); 778
 L = getLayerAddress(SK); 779
 t = getTreeAddress(SK); 780
 ADRS = toByte(0, 32); 781
 ADRS.setLayerAddress(L); 782
 ADRS.setTreeAddress(t); 783

 if (L > 0) { 784
 // M must be the n-byte root from an XMSS public key 785
 byte[n] r = 0; // n-byte string of zeros 786
 byte[n] M' = M; 787
 } else { 788
 byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32)); 789
 byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M); 790
 } 791
 idx_leaf = idx_sig - t * 2^(h / d); 792
 Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS); 793
 return Sig; 794

7.2.2 XMSSMT External Device Operations 795

XMSS^MT external device keygen 796

 Input: No input 797

 // Generate top-level key pair on a cryptographic module 798
 PK_MT = XMSS'_keyGen(1, 0, NULL); 799

 t = 0; 800
 for each bottom-level key pair to be created { 801
 // Generate bottom-level key pair on a cryptographic module 802
 PK[t] = XMSS’_keygen(0, t, PK_MT); 803

 // Submit root of bottom-level key pair’s public key 804
 // to be signed by the top-level key pair. 805
 SigPK[t] = XMSS'_sign(getRoot(PK[t])); 806

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

28

 // If the public key on the bottom-level tree was created using 807
 // a tree address of t, then its root needs to be signed by OTS 808
 // key t of the top-level tree. If it wasn’t, then try again.6 809
 if while (getIdx(SigPK[t]) ≠ t) { 810
 t = getIdx(SigPK[t]) + 1; 811
 PK[t] = XMSS'_keygen(0, t, PK_MT); 812
 SigPK[t] = XMSS'_sign(getRoot(PK[t])); 813
 } 814
 t = t + 1; 815
 } 816

XMSS^MT external device sign 817

 Input: Message M 818
 Output: signature Sig 819

 // Send XMSS'_sign() command to one of the bottom-level key pairs 820
 Sig_tmp = XMSS'_sign(M); 821

 idx_sig = getIdx(Sig_tmp); 822

 // Determine which bottom-level tree was used to sign the message 823
 // by extracting at the most significant bits of idx sig. 824
 t = [idx sig – (idx sig mod 2^(h / d))]/ 2^(h / d)) most 825
significant bits of idx_sig; 826

 // Append the signature of the signing key pair's root 827
 // (just the output of treeSig, not idx_sig or r). 828
 Sig = Sig_tmp || getSig(SigPK[t]); 829
 return Sig; 830

6 While the signing cryptographic module should use its one-time keys sequentially, making it possible for the external device to
determine in advance which one-time key will be used to sign the public key of bottom-level tree, the external device cannot
specify to the signing cryptographic module which one-time key it should use. So, there is a small chance that an internal glitch
in the signing cryptographic will cause it to skip over one or more key indices and sign the bottom-level’s public key using an
unexpected key index. While this event should be rare, if it does happen, the only option is to regenerate the bottom-level key
pair, setting the tree address to the next expected key index, and then try again.

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

29

8 Conformance 831

8.1 Key Generation and Signature Generation 832

Cryptographic modules implementing signature generation for a parameter set shall also 833
implement key generation for that parameter set. Implementations of the key generation and 834
signature algorithms in this document shall only be validated for use within hardware 835
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or 836
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be 837
limited.7 In addition, a cryptographic module implementing the key generation or signature 838
algorithms shall only operate in an approved mode of operation and shall not implement a 839
bypass mode. The cryptographic module shall not allow for the export of private keying 840
material. The entropy source for any approved random bit generator [6] used in the 841
implementation shall be located inside the cryptographic module’s physical boundary. 842

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a 843
request to sign a message, the cryptographic module shall update increment the state leaf index 844
of the private key (q in LMS, idx in XMSS, idx sig in XMSSMT) and shall store the incremented 845
leaf index value in nonvolatile storage before exporting a signature value or accepting another 846
request to sign a message. The cryptographic module shall not use an OTS key to generate a 847
digital signature more than one time.8 848

Cryptographic modules implementing LMS key and signature generation shall support at least 849
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 850
cryptographic module, the cryptographic module shall support at least one LMS parameter set 851
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic 852
modules implementing LMS key and signature generation shall generate random data in 853
accordance with Section 6.1. 854

Cryptographic modules implementing XMSS key and signature generation shall implement 855
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section 856
5. (The WOTS+ key generation method specified in Algorithm 10' in Section 7.2.1 shall be 857
used.) Cryptographic modules supporting implementation of XMSSMT key and signature 858
generation shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this 859
document for at least one of the XMSSMT parameter sets in Section 5. Cryptographic modules 860
implementing XMSS or XMSSMT key and signature generation shall generate random data in 861
accordance with Section 6.2. 862

7 See Section 4.6 of FIPS 140-2 [19].

8 In some implementations of HSS or XMSSMT (e.g., Algorithm 16 in [1]), the root of the LMS or XMSS tree used to create the
signature is signed by its parent each time a signature is generated. This results in an OTS key being used to generate a digital
signature more than once. While the OTS key is used more than once, the message being signed is the same, and so the result is
to just recreate the same signature (as long as the randomizer value is the same each time). However, as noted in [9] and [10],
such implementations are vulnerable to fault injection attacks. Implementations compliant with this document must sign the root
of each tree only once. The resulting signature may be stored within the cryptographic module or it may be exported from the
cryptographic module for storage elsewhere.

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

30

8.2 Signature Verification 863

Cryptographic modules implementing LMS signature verification shall support at least one of 864
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 865
cryptographic module, the cryptographic module shall support at least one LMS parameter set 866
from Section 4 that uses the same hash function as the LM-OTS parameter set. 867

Cryptographic modules implementing XMSS signature verification shall implement Algorithm 868
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules implementing 869
XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one of the 870
parameter sets in Section 5. 871

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

31

9 Security Considerations 872

9.1 One-Time Signature Key Reuse 873

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain 874
signatures for two different messages created using the same one-time signature (OTS) key, then 875
it would become computationally feasible for that attacker to create forgeries [13]. As noted in 876
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused 877
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions 878
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully 879
designed to ensure that unexpected behavior cannot result in an OTS key being reused. 880

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a 881
signature is generated. If the private key is stored in nonvolatile memory, then the state of the 882
key must be updated in the nonvolatile memory to mark an OTS key as unavailable before the 883
corresponding signature generated using the OTS key is exported. Depending on the 884
environment, this can be nontrivial to implement. With many operating systems, simply writing 885
the update to a file is not sufficient as the write operation will be cached with the actual write to 886
nonvolatile memory taking place later. If the cryptographic module loses power or crashes before 887
the write to nonvolatile memory, then the state update will be lost. If a signature were exported 888
after the write operation was issued but before the update was written to nonvolatile memory, 889
there would be a risk that the OTS key would be used again after the cryptographic module starts 890
up. 891

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to 892
increase each time the counter’s value is read. When available, using the current value of a 893
monotonic counter to determine which OTS key to use for a signature may be very helpful in 894
avoiding unintentional reuse of an OTS key. 895

9.2 Fault Injection Resistance 896

Fault injection attacks involve the intentional introduction of an error at some point during the 897
execution of an algorithm, such as by varying the voltage supplied to a device executing the 898
algorithm, causing it to produce the wrong output, and providing the attacker with additional 899
information. These attacks are most relevant for users of embedded cryptographic devices where 900
an adversary may have physical access to the signing device and thus can control its operations. 901

Fault injection attacks have been shown to be effective against hash based signatures, though 902
they are more severe when used against stateless schemes like SPHINCS and its variants [9][10]. 903
With hash based signatures, the attack works by forcing the cryptographic device to sign two 904
different messages with the same OTS key. The attack takes advantage of the schemes where 905
multiple levels of Merkle trees are used and the roots of lower-level trees are signed using a one-906
time signature (XMSSMT and HSS) [10]. In some cases, the signatures on these roots are 907
recomputed each time a message is signed. Under normal circumstances, this is acceptable since 908
it just involves using an OTS key multiple times to sign the same message. However, by 909
injecting a fault that introduces an error in the computation of the Merkle tree root at any of the 910
non top layers, an attacker can cause the device to sign a different message under the same key. 911
With both a valid and a faulty signature, the attacker can “graft” a new subtree into the hierarchy 912

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

32

and produce universal forgeries. 913

The faulted signature remains a valid signature, so checking that the signature verifies is 914
insufficient to detect or prevent this attack. The only reliable way to prevent this attack is to 915
compute each one time signature once, cache the result, and output it whenever needed. When 916
implementing multiple levels of trees as described in Section 7, this is the only option since no 917
cryptographic module will use any OTS more than once. If multiple levels of trees are 918
implemented within a single cryptographic module, it is recommended to cache a single, one-919
time signature per layer of subtrees, refreshing them when a new subtree is used for signing [10]. 920
While this prevents an attacker from learning about the secret key when a corrupted signature is 921
cached, it does result in the cached one time signature being incorrect and thus prevents the 922
hash based signature scheme from working. 923

9.39.2 Hash Collisions 924

In LMS and XMSS, as in the other approved digital signature schemes [4], the signature 925
generation algorithm is not applied directly to the message but to a message digest generated by 926
the underlying hash function. The security of any signature scheme depends on the inability of an 927
attacker to find distinct messages with the same message digest. 928

There are two ways that an attacker might find these distinct messages. The attacker could look 929
for a message that has the same message digest as a message that has already been signed (a 930
second preimage), or the attacker could look for any two messages that have the same message 931
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of 932
them [21]. Finding a second preimage is much more difficult than finding a generic collision, 933
and it would be infeasible for an attacker to find a second preimage with any of the hash 934
functions allowed for use in this recommendation. 935

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a 936
random value is created and prepended to the message, and the hash function is applied to this 937
expanded message to produce the message digest. Prepending the random value makes it 938
infeasible for anyone other than the signer to find a generic collision as finding a collision would 939
require predicting the randomizing value. The randomized hashing process does not, however, 940
impact the ability for a signer to create a generic collision since the signer, knowing the private 941
key, could choose the random value to prepend to the message. 942

The 1926-bit hash functions in this recommendation, SHA-256/1926 and SHAKE256/1926, 943
offer significantly less resistance to generic collision searches than their 256-bit counterparts. In 944
particular, a collision of the 1926-bit functions may be found as the number of sampled inputs 945
approaches 296, as opposed to 2128 for the 256-bit functions, and it may be possible for a signer 946
with access to an extremely large amount of computing resources to sample 296 inputs. 947

Consequently, one tradeoff for the use of 1926-bit hash functions in LMS and XMSS is the 948
weakening of the verifier’s assurance that the signer will not be able to change the message once 949
the signature is revealed. This possibility does not affect the formal security properties of the 950
schemes because it remains the case that only the signer could produce a valid signature on a 951
message. 952

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

33

9.3 Revocation 953

Although procedures for the revocation of a compromised key are out of the scope of this 954
publication, the implementation of any signature scheme in principle should include such a 955
procedure [22]. For implementations of stateful hash-based signature schemes, which would be 956
vulnerable in the event of the OTS key reuse, revocation procedures would be arguably even 957
more important. 958

In practice, however, procedures for revocation that are timely, efficient, and robust are often 959
difficult to implement. For applications with the characteristics described in Section 1.1, the 960
difficulties would likely be magnified. 961

 962

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

34

References 963

[1] Huelsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A (2018) XMSS:
eXtended Merkle Signature Scheme. (Internet Research Task Force (IRTF)),
IRTF Request for Comments (RFC) 8391.
https://doi.org/10.17487/RFC8391.

[2] McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali Hash-Based
Signatures. (Internet Research Task Force (IRTF)), IRTF Request for
Comments (RFC) 8554. https://doi.org/10.17487/RFC8554.

[3] National Institute of Standards and Technology (2015) Secure Hash Standard
(SHS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 180-4.
https://doi.org/10.6028/NIST.FIPS.180-4

[4] National Institute of Standards and Technology (2013) Digital Signature
Standard (DSS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 186-4.
https://doi.org/10.6028/NIST.FIPS.186-4

[5] National Institute of Standards and Technology (2015) SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. (U.S.
Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202.
https://doi.org/10.6028/NIST.FIPS.202

[6] Special Publication 800-90 series:

Barker EB, Kelsey JM (2015) Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M
(2018) Recommendation for the Entropy Sources Used for Random Bit
Generation. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-90B.
https://doi.org/10.6028/NIST.SP.800-90B

Barker EB, Kelsey JM (2016) Recommendation for Random Bit Generator
(RBG) Constructions. (National Institute of Standards and Technology,
Gaithersburg, MD), (Second Draft) NIST Special Publication (SP) 800-90C.
Available at https://csrc.nist.gov/publications/detail/sp/800-90c/draft

[7] National Institute of Standards and Technology (2019) Post-Quantum
Cryptography. Available at https://csrc.nist.gov/projects/post-quantum-
cryptography

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

35

[8] McGrew D, Kampanakis P, Fluhrer S, Gazdag S, Butin D, Buchmann J
(2016) State Management for Hash-Based Signatures. Cryptology ePrint
Archive, Report 2016/357. https://eprint.iacr.org/2016/357.pdf

[9] Genêt A, Kannwischer MJ, Pelletier H, McLauchlan A (2018) Practical Fault
Injection Attacks on SPHINCS. Cryptology ePrint Archive, Report
2018/674. https://eprint.iacr.org/2018/674

[10] Castelnovi L, Martinelli A, Prest T (2018) Grafting trees: A fault attack
against the SPHINCS framework. Post-Quantum Cryptography - 9th
International Conference (PQCrypto 2018), Lecture Notes in Computer
Science 10786, pp. 165–184. https://doi.org/10.1007/978-3-319-79063-3_8

[11] Fluhrer S (2017) Further Analysis of a Proposed Hash-Based Signature
Standard. Cryptology ePrint Archive, Report 2017/553.
https://eprint.iacr.org/2017/553.pdf

[12] Buchmann J, Dahmen E, Hulsing A (2011) XMSS – A Practical Forward
Secure Signature Scheme based on Minimal Security Assumptions.
Cryptology ePrint Archive, Report 2011/484.
https://eprint.iacr.org/2011/484.pdf

[13] Bruinderink LG, Hülsing A (2016) “Oops, I did it again” – Security of One-
Time Signatures under Two-Message Attacks. Cryptology ePrint Archive,
Report 2016/1042. https://eprint.iacr.org/2016/1042.pdf

[14] Perlner R, Cooper D (2009) Quantum Resistant Public Key Cryptography: A
Survey. 8th Symposium on Identity and Trust on the Internet (IDtrust 2009),
pp 85-93. https://doi.org/10.1145/1527017.1527028

[15] Eaton E (2017) Leighton-Micali Hash-Based Signatures in the Quantum
Random-Oracle Model. Cryptology ePrint Archive, Report 2017/607.
https://eprint.iacr.org/2017/607

[16] Bernstein DJ, Hülsing A, Kölbl S, Niederhagen R, Rijneveld J, Schwabe P
(2019) The SPHINCS+ Signature Framework. Cryptology ePrint Archive,
Report 2019/1086. https://eprint.iacr.org/2019/1086.pdfHülsing A, Rijneveld
J, Song F (2015) Mitigating Multi Target Attacks in Hash based Signatures.
Cryptology ePrint Archive, Report 2015/1256.
https://eprint.iacr.org/2015/1256

[17] Malkin T, Micciancio D, Miner S (2002) Efficient generic forward-secure
signatures with an unbounded number of time periods. Advances in
Cryptology — EUROCRYPT 2002, Lecture Notes in Computer Science
2332, pp. 400–417. https://doi.org/10.1007/3-540-46035-7 27

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

36

[18] Merkle RC (1979) Security, Authentication, and Public Key Systems. PhD
thesis, Stanford University, June 1979. Available at
https://www.merkle.com/papers/Thesis1979.pdf

[19] National Institute of Standards and Technology (2001) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-2, Change Notice 2 December 03, 2002.
https://doi.org/10.6028/NIST.FIPS.140-2

National Institute of Standards and Technology (2019) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-3. https://doi.org/10.6028/NIST.FIPS.140-3

[20] Chen L, Jordan S, Liu Y-K, Moody D, Peralta R, Perlner RA, Smith-Tone D
(2016) Report on Post-Quantum Cryptography. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal
Report (IR) 8105. https://doi.org/10.6028/NIST.IR.8105

[21] Sotirov A, Stevens M, Appelbaum J, Lenstra A, Molnar D, Osvik DA, de
Weger B (2008) MD5 considered harmful today: Creating a rogue CA
certificate. Available at https://www.win.tue.nl/hashclash/rogue-ca

[22] Special Publication 800-57 series:

Barker EB (2016) Recommendation for Key Management, Part 1: General.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-57 Part 1, Rev. 4.
https://doi.org/10.6028/NIST.SP.800-57pt1r4

Barker EB, Barker WC (2019) Recommendation for Key Management: Part
2 – Best Practices for Key Management Organizations. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-57 Part 2, Rev. 1. https://doi.org/10.6028/NIST.SP.800-57pt2r1

Barker EB, Dang QH (2015) Recommendation for Key Management, Part 3:
Application-Specific Key Management Guidance. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-57 Part 3, Rev. 1. https://doi.org/10.6028/NIST.SP.800-57pt3r1

[23] Housley R (2019) Hash Of Root Key Certificate Extension. (Internet
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8649.
https://doi.org/10.17487/RFC8649.

 964

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

37

Appendix A—LMS XDR Syntax Additions 965

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the 966
XDR syntax in Section 3.3 of [2] is extended as follows. For data structures of type enum or 967
union below, the values or case statements specified in this appendix are to be added to the 968
ones specified in Section 3.3 of [2]. 969

/* one-time signatures */ 970
 971
enum lmots_algorithm_type { 972
 lmots_sha256_n24_w1 = TBD, 973
 lmots_sha256_n24_w2 = TBD, 974
 lmots_sha256_n24_w4 = TBD, 975
 lmots_sha256_n24_w8 = TBD, 976
 lmots_shake_n32_w1 = TBD, 977
 lmots_shake_n32_w2 = TBD, 978
 lmots_shake_n32_w4 = TBD, 979
 lmots_shake_n32_w8 = TBD, 980
 lmots_shake_n24_w1 = TBD, 981
 lmots_shake_n24_w2 = TBD, 982
 lmots_shake_n24_w4 = TBD, 983
 lmots_shake_n24_w8 = TBD 984
}; 985
 986
typedef opaque bytestring24[24]; 987
 988
struct lmots_signature_n24_p200 { 989
 bytestring24 C; 990
 bytestring24 y[200]; 991
}; 992
 993
struct lmots_signature_n24_p101 { 994
 bytestring24 C; 995
 bytestring24 y[101]; 996
}; 997
 998
struct lmots_signature_n24_p51 { 999
 bytestring24 C; 1000
 bytestring24 y[51]; 1001
}; 1002
 1003
struct lmots_signature_n24_p26 { 1004
 bytestring24 C; 1005
 bytestring24 y[26]; 1006
}; 1007
 1008
union lmots_signature switch (lmots_algorithm_type type) { 1009

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

38

 case lmots_sha256_n24_w1: 1010
 lmots_signature_n24_p200 sig_n24_p200; 1011
 case lmots_sha256_n24_w2: 1012
 lmots_signature_n24_p101 sig_n24_p101; 1013
 case lmots_sha256_n24_w4: 1014
 lmots_signature_n24_p51 sig_n24_p51; 1015
 case lmots_sha256_n24_w8: 1016
 lmots_signature_n24_p26 sig_n24_p26; 1017
 case lmots_shake_n32_w1: 1018
 lmots_signature_n32_p265 sig_n32_p265; 1019
 case lmots_shake_n32_w2: 1020
 lmots_signature_n32_p133 sig_n32_p133; 1021
 case lmots_shake_n32_w4: 1022
 lmots_signature_n32_p67 sig_n32_p67; 1023
 case lmots_shake_n32_w8: 1024
 lmots_signature_n32_p34 sig_n32_p34; 1025
 case lmots_shake_n24_w1: 1026
 lmots_signature_n24_p200 sig_n24_p200; 1027
 case lmots_shake_n24_w2: 1028
 lmots_signature_n24_p101 sig_n24_p101; 1029
 case lmots_shake_n24_w4: 1030
 lmots_signature_n24_p51 sig_n24_p51; 1031
 case lmots_shake_n24_w8: 1032
 lmots_signature_n24_p26 sig_n24_p26; 1033
}; 1034
 1035
/* hash-based signatures (hbs) */ 1036
 1037
enum lms_algorithm_type { 1038
 lms_sha256_n24_h5 = TBD, 1039
 lms_sha256_n24_h10 = TBD, 1040
 lms_sha256_n24_h15 = TBD, 1041
 lms_sha256_n24_h20 = TBD, 1042
 lms_sha256_n24_h25 = TBD, 1043
 lms_shake_n32_h5 = TBD, 1044
 lms_shake_n32_h10 = TBD, 1045
 lms_shake_n32_h15 = TBD, 1046
 lms_shake_n32_h20 = TBD, 1047
 lms_shake_n32_h25 = TBD, 1048
 lms_shake_n24_h5 = TBD, 1049
 lms_shake_n24_h10 = TBD, 1050
 lms_shake_n24_h15 = TBD, 1051
 lms_shake_n24_h20 = TBD, 1052
 lms_shake_n24_h25 = TBD 1053
}; 1054
 1055
/* leighton-micali signatures (lms) */ 1056

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

39

 1057
union lms_path switch (lms_algorithm_type type) { 1058
 case lms_sha256_n24_h5: 1059
 case lms_shake_n24_h5: 1060
 bytestring24 path_n24_h5[5]; 1061
 case lms_sha256_n24_h10: 1062
 case lms_shake_n24_h10: 1063
 bytestring24 path_n24_h10[10]; 1064
 case lms_sha256_n24_h15: 1065
 case lms_shake_n24_h15: 1066
 bytestring24 path_n24_h15[15]; 1067
 case lms_sha256_n24_h20: 1068
 case lms_shake_n24_h20: 1069
 bytestring24 path_n24_h20[20]; 1070
 case lms_sha256_n24_h25: 1071
 case lms_shake_n24_h25: 1072
 bytestring24 path_n24_h25[25]; 1073
 1074
 case lms_shake_n32_h5: 1075
 bytestring32 path_n32_h5[5]; 1076
 case lms_shake_n32_h10: 1077
 bytestring32 path_n32_h10[10]; 1078
 case lms_shake_n32_h15: 1079
 bytestring32 path_n32_h15[15]; 1080
 case lms_shake_n32_h20: 1081
 bytestring32 path_n32_h20[20]; 1082
 case lms_shake_n32_h25: 1083
 bytestring32 path_n32_h25[25]; 1084
}; 1085
 1086
struct lms_key_n24 { 1087
 lmots_algorithm_type ots_alg_type; 1088
 opaque I[16]; 1089
 opaque K[24]; 1090
}; 1091
 1092
union lms_public_key switch (lms_algorithm_type type) { 1093
 case lms_sha256_n24_h5: 1094
 case lms_sha256_n24_h10: 1095
 case lms_sha256_n24_h15: 1096
 case lms_sha256_n24_h20: 1097
 case lms_sha256_n24_h25: 1098
 case lms_shake_n24_h5: 1099
 case lms_shake_n24_h10: 1100
 case lms_shake_n24_h15: 1101
 case lms_shake_n24_h20: 1102
 case lms_shake_n24_h25: 1103

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

40

 lms_key_n24 z_n24; 1104
 1105
 case lms_shake_n32_h5: 1106
 case lms_shake_n32_h10: 1107
 case lms_shake_n32_h15: 1108
 case lms_shake_n32_h20: 1109
 case lms_shake_n32_h25: 1110
 lms_key_n32 z_n32; 1111
}; 1112

 1113

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

41

Appendix B—XMSS XDR Syntax Additions 1114

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR 1115
syntax in Appendices A, B, and C of [1] is extended as follows. For data structures of type enum 1116
or union below, the values or case statements specified in this appendix are to be added to the 1117
ones specified in Appendices A, B, and C of [1]. 1118

B.1 WOTS+ 1119

/* ots_algorithm_type identifies a particular 1120
 signature algorithm */ 1121
 1122
enum ots_algorithm_type { 1123
 wotsp-sha2_192 = TBD, 1124
 wotsp-shake256_256 = TBD, 1125
 wotsp-shake256_192 = TBD, 1126
}; 1127

 1128
/* Byte strings */ 1129
 1130
typedef opaque bytestring24[24]; 1131
 1132
union ots_signature switch (ots_algorithm_type type) { 1133
 1134
 case wotsp-sha2_192: 1135
 case wotsp-shake256_192: 1136
 bytestring24 ots_sig_n24_len51[51]; 1137
 1138
 case wotsp-shake256_256: 1139
 bytestring32 ots_sig_n32_len67[67]; 1140
}; 1141
 1142
union ots_pubkey switch (ots_algorithm_type type) { 1143
 case wotsp-sha2_192: 1144
 case wotsp-shake256_192: 1145
 bytestring24 ots_pubk_n24_len51[51]; 1146
 1147
 case wotsp-shake256_256: 1148
 bytestring32 ots_pubk_n32_len67[67]; 1149
}; 1150

B.2 XMSS 1151

/* Definition of parameter sets */ 1152
 1153
enum xmss_algorithm_type { 1154
 xmss-sha2_10_192 = TBD, 1155
 xmss-sha2_16_192 = TBD, 1156

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

42

 xmss-sha2_20_192 = TBD, 1157
 1158
 xmss-shake256_10_256 = TBD, 1159
 xmss-shake256_16_256 = TBD, 1160
 xmss-shake256_20_256 = TBD, 1161
 1162
 xmss-shake256_10_192 = TBD, 1163
 xmss-shake256_16_192 = TBD, 1164
 xmss-shake256_20_192 = TBD, 1165
}; 1166
 1167
/* Authentication path types */ 1168
 1169
union xmss_path switch (xmss_algorithm_type type) { 1170
 case xmss-sha2_10_192: 1171
 case xmss-shake256_10_192: 1172
 bytestring24 path_n24_t10[10]; 1173
 1174
 case xmss-shake256_10_256: 1175
 bytestring32 path_n32_t10[10]; 1176
 1177
 case xmss-sha2_16_192: 1178
 case xmss-shake256_16_192: 1179
 bytestring24 path_n24_t16[16]; 1180
 1181
 case xmss-shake256_16_256: 1182
 bytestring32 path_n32_t16[16]; 1183
 1184
 case xmss-sha2_20_192: 1185
 case xmss-shake256_20_192: 1186
 bytestring24 path_n24_t20[20]; 1187
 1188
 case xmss-shake256_20_256: 1189
 bytestring32 path_n32_t20[20]; 1190
}; 1191
 1192
/* Types for XMSS random strings */ 1193
 1194
union random_string_xmss switch (xmss_algorithm_type type) { 1195
 case xmss-sha2_10_192: 1196
 case xmss-sha2_16_192: 1197
 case xmss-sha2_20_192: 1198
 case xmss-shake256_10_192: 1199
 case xmss-shake256_16_192: 1200
 case xmss-shake256_20_192: 1201
 bytestring24 rand_n24; 1202
 1203

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

43

 case xmss-shake256_10_256: 1204
 case xmss-shake256_16_256: 1205
 case xmss-shake256_20_256: 1206
 bytestring32 rand_n32; 1207
}; 1208
 1209
/* Corresponding WOTS+ type for given XMSS type */ 1210
 1211
union xmss_ots_signature switch (xmss_algorithm_type type) { 1212
 case xmss-sha2_10_192: 1213
 case xmss-sha2_16_192: 1214
 case xmss-sha2_20_192: 1215
 wotsp-sha2_192; 1216
 1217
 case xmss-shake256_10_256: 1218
 case xmss-shake256_16_256: 1219
 case xmss-shake256_20_256: 1220
 wotsp-shake256_256; 1221
 1222
 case xmss-shake256_10_192: 1223
 case xmss-shake256_16_192: 1224
 case xmss-shake256_20_192: 1225
 wotsp-shake256_192; 1226
}; 1227
 1228
/* Types for bitmask seed */ 1229
 1230
union seed switch (xmss_algorithm_type type) { 1231
 case xmss-sha2_10_192: 1232
 case xmss-sha2_16_192: 1233
 case xmss-sha2_20_192: 1234
 case xmss-shake256_10_192: 1235
 case xmss-shake256_16_192: 1236
 case xmss-shake256_20_192: 1237
 bytestring24 seed_n24; 1238
 1239
 case xmss-shake256_10_256: 1240
 case xmss-shake256_16_256: 1241
 case xmss-shake256_20_256: 1242
 bytestring32 seed_n32; 1243
}; 1244
 1245
/* Types for XMSS root node */ 1246
 1247
union xmss_root switch (xmss_algorithm_type type) { 1248
 case xmss-sha2_10_192: 1249
 case xmss-sha2_16_192: 1250

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

44

 case xmss-sha2_20_192: 1251
 case xmss-shake256_10_192: 1252
 case xmss-shake256_16_192: 1253
 case xmss-shake256_20_192: 1254
 bytestring24 root_n24; 1255
 1256
 case xmss-shake256_10_256: 1257
 case xmss-shake256_16_256: 1258
 case xmss-shake256_20_256: 1259
 bytestring32 root_n32; 1260
}; 1261

B.3 XMSSMT 1262

/* Definition of parameter sets */ 1263
 1264
enum xmssmt_algorithm_type { 1265
 1266
 xmssmt-sha2_20/2_192 = TBD, 1267
 xmssmt-sha2_20/4_192 = TBD, 1268
 xmssmt-sha2_40/2_192 = TBD, 1269
 xmssmt-sha2_40/4_192 = TBD, 1270
 xmssmt-sha2_40/8_192 = TBD, 1271
 xmssmt-sha2_60/3_192 = TBD, 1272
 xmssmt-sha2_60/6_192 = TBD, 1273
 xmssmt-sha2_60/12_192 = TBD, 1274
 1275
 xmssmt-shake256_20/2_256 = TBD, 1276
 xmssmt-shake256_20/4_256 = TBD, 1277
 xmssmt-shake256_40/2_256 = TBD, 1278
 xmssmt-shake256_40/4_256 = TBD, 1279
 xmssmt-shake256_40/8_256 = TBD, 1280
 xmssmt-shake256_60/3_256 = TBD, 1281
 xmssmt-shake256_60/6_256 = TBD, 1282
 xmssmt-shake256_60/12_256 = TBD, 1283
 1284
 xmssmt-shake256_20/2_192 = TBD, 1285
 xmssmt-shake256_20/4_192 = TBD, 1286
 xmssmt-shake256_40/2_192 = TBD, 1287
 xmssmt-shake256_40/4_192 = TBD, 1288
 xmssmt-shake256_40/8_192 = TBD, 1289
 xmssmt-shake256_60/3_192 = TBD, 1290
 xmssmt-shake256_60/6_192 = TBD, 1291
 xmssmt-shake256_60/12_192 = TBD, 1292
}; 1293
 1294
/* Type for XMSS^MT key pair index */ 1295

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

45

/* Depends solely on h */ 1296
 1297
union idx_sig_xmssmt switch (xmss_algorithm_type type) { 1298
 case xmssmt-sha2_20/2_192: 1299
 case xmssmt-sha2_20/4_192: 1300
 case xmssmt-shake256_20/2_256: 1301
 case xmssmt-shake256_20/4_256: 1302
 case xmssmt-shake256_20/2_192: 1303
 case xmssmt-shake256_20/4_192: 1304
 bytestring3 idx3; 1305
 1306
 case xmssmt-sha2_40/2_192: 1307
 case xmssmt-sha2_40/4_192: 1308
 case xmssmt-sha2_40/8_192: 1309
 case xmssmt-shake256_40/2_256: 1310
 case xmssmt-shake256_40/4_256: 1311
 case xmssmt-shake256_40/8_256: 1312
 case xmssmt-shake256_40/2_192: 1313
 case xmssmt-shake256_40/4_192: 1314
 case xmssmt-shake256_40/8_192: 1315
 bytestring5 idx5; 1316
 1317
 case xmssmt-sha2_60/3_192: 1318
 case xmssmt-sha2_60/6_192: 1319
 case xmssmt-sha2_60/12_192: 1320
 case xmssmt-shake256_60/3_256: 1321
 case xmssmt-shake256_60/6_256: 1322
 case xmssmt-shake256_60/12_256: 1323
 case xmssmt-shake256_60/3_192: 1324
 case xmssmt-shake256_60/6_192: 1325
 case xmssmt-shake256_60/12_192: 1326
 bytestring8 idx8; 1327
}; 1328
 1329
union random_string_xmssmt switch (xmssmt_algorithm_type type) { 1330
 case xmssmt-sha2_20/2_192: 1331
 case xmssmt-sha2_20/4_192: 1332
 case xmssmt-sha2_40/2_192: 1333
 case xmssmt-sha2_40/4_192: 1334
 case xmssmt-sha2_40/8_192: 1335
 case xmssmt-sha2_60/3_192: 1336
 case xmssmt-sha2_60/6_192: 1337
 case xmssmt-sha2_60/12_192: 1338
 case xmssmt-shake256_20/2_192: 1339
 case xmssmt-shake256_20/4_192: 1340
 case xmssmt-shake256_40/2_192: 1341
 case xmssmt-shake256_40/4_192: 1342

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

46

 case xmssmt-shake256_40/8_192: 1343
 case xmssmt-shake256_60/3_192: 1344
 case xmssmt-shake256_60/6_192: 1345
 case xmssmt-shake256_60/12_192: 1346
 bytestring24 rand_n24; 1347
 1348
 case xmssmt-shake256_20/2_256: 1349
 case xmssmt-shake256_20/4_256: 1350
 case xmssmt-shake256_40/2_256: 1351
 case xmssmt-shake256_40/4_256: 1352
 case xmssmt-shake256_40/8_256: 1353
 case xmssmt-shake256_60/3_256: 1354
 case xmssmt-shake256_60/6_256: 1355
 case xmssmt-shake256_60/12_256: 1356
 bytestring32 rand_n32; 1357
}; 1358
 1359
/* Type for reduced XMSS signatures */ 1360
 1361
union xmss_reduced (xmss_algorithm_type type) { 1362
 case xmssmt-sha2_20/2_192: 1363
 case xmssmt-sha2_40/4_192: 1364
 case xmssmt-sha2_60/6_192: 1365
 case xmssmt-shake256_20/2_192: 1366
 case xmssmt-shake256_40/4_192: 1367
 case xmssmt-shake256_60/6_192: 1368
 bytestring24 xmss_reduced_n24_t61[61]; 1369
 1370
 case xmssmt-sha2_20/4_192: 1371
 case xmssmt-sha2_40/8_192: 1372
 case xmssmt-sha2_60/12_192: 1373
 case xmssmt-shake256_20/4_192: 1374
 case xmssmt-shake256_40/8_192: 1375
 case xmssmt-shake256_60/12_192: 1376
 bytestring24 xmss_reduced_n24_t56[56]; 1377
 1378
 case xmssmt-sha2_40/2_192: 1379
 case xmssmt-sha2_60/3_192: 1380
 case xmssmt-shake256_40/2_192: 1381
 case xmssmt-shake256_60/3_192: 1382
 bytestring24 xmss_reduced_n24_t71[71]; 1383
 1384
 case xmssmt-shake256_20/2_256: 1385
 case xmssmt-shake256_40/4_256: 1386
 case xmssmt-shake256_60/6_256: 1387
 bytestring32 xmss_reduced_n32_t77[77]; 1388
 1389

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

47

 case xmssmt-shake256_20/4_256: 1390
 case xmssmt-shake256_40/8_256: 1391
 case xmssmt-shake256_60/12_256: 1392
 bytestring32 xmss_reduced_n32_t72[72]; 1393
 1394
 case xmssmt-shake256_40/2_256: 1395
 case xmssmt-shake256_60/3_256: 1396
 bytestring32 xmss_reduced_n32_t87[87]; 1397
}; 1398
 1399
/* xmss_reduced_array depends on d */ 1400
 1401
union xmss_reduced_array (xmss_algorithm_type type) { 1402
 case xmssmt-sha2_20/2_192: 1403
 case xmssmt-sha2_40/2_192: 1404
 case xmssmt-shake256_20/2_256: 1405
 case xmssmt-shake256_40/2_256: 1406
 case xmssmt-shake256_20/2_192: 1407
 case xmssmt-shake256_40/2_192: 1408
 xmss_reduced xmss_red_arr_d2[2]; 1409
 1410
 case xmssmt-sha2_60/3_192: 1411
 case xmssmt-shake256_60/3_256: 1412
 case xmssmt-shake256_60/3_192: 1413
 xmss_reduced xmss_red_arr_d3[3]; 1414
 1415
 case xmssmt-sha2_20/4_192: 1416
 case xmssmt-sha2_40/4_192: 1417
 case xmssmt-shake256_20/4_256: 1418
 case xmssmt-shake256_40/4_256: 1419
 case xmssmt-shake256_20/4_192: 1420
 case xmssmt-shake256_40/4_192: 1421
 xmss_reduced xmss_red_arr_d4[4]; 1422
 1423
 case xmssmt-sha2_60/6_192: 1424
 case xmssmt-shake256_60/6_256: 1425
 case xmssmt-shake256_60/6_192: 1426
 xmss_reduced xmss_red_arr_d6[6]; 1427
 1428
 case xmssmt-sha2_40/8_192: 1429
 case xmssmt-shake256_40/8_256: 1430
 case xmssmt-shake256_40/8_192: 1431
 xmss_reduced xmss_red_arr_d8[8]; 1432
 1433
 case xmssmt-sha2_60/12_192: 1434
 case xmssmt-shake256_60/12_256: 1435
 case xmssmt-shake256_60/12_192: 1436

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

48

 xmss_reduced xmss_red_arr_d12[12]; 1437
}; 1438
 1439
/* Types for bitmask seed */ 1440
 1441
union seed switch (xmssmt_algorithm_type type) { 1442
 case xmssmt-sha2_20/2_192: 1443
 case xmssmt-sha2_20/4_192: 1444
 case xmssmt-sha2_40/2_192: 1445
 case xmssmt-sha2_40/4_192: 1446
 case xmssmt-sha2_40/8_192: 1447
 case xmssmt-sha2_60/3_192: 1448
 case xmssmt-sha2_60/6_192: 1449
 case xmssmt-sha2_60/12_192: 1450
 case xmssmt-shake256_20/2_192: 1451
 case xmssmt-shake256_20/4_192: 1452
 case xmssmt-shake256_40/2_192: 1453
 case xmssmt-shake256_40/4_192: 1454
 case xmssmt-shake256_40/8_192: 1455
 case xmssmt-shake256_60/3_192: 1456
 case xmssmt-shake256_60/6_192: 1457
 case xmssmt-shake256_60/12_192: 1458
 bytestring24 seed_n24; 1459
 1460
 case xmssmt-shake256_20/2_256: 1461
 case xmssmt-shake256_20/4_256: 1462
 case xmssmt-shake256_40/2_256: 1463
 case xmssmt-shake256_40/4_256: 1464
 case xmssmt-shake256_40/8_256: 1465
 case xmssmt-shake256_60/3_256: 1466
 case xmssmt-shake256_60/6_256: 1467
 case xmssmt-shake256_60/12_256: 1468
 bytestring32 seed_n32; 1469
 1470
}; 1471
 1472
/* Types for XMSS^MT root node */ 1473
 1474
union xmssmt_root switch (xmssmt_algorithm_type type) { 1475
 case xmssmt-sha2_20/2_192: 1476
 case xmssmt-sha2_20/4_192: 1477
 case xmssmt-sha2_40/2_192: 1478
 case xmssmt-sha2_40/4_192: 1479
 case xmssmt-sha2_40/8_192: 1480
 case xmssmt-sha2_60/3_192: 1481
 case xmssmt-sha2_60/6_192: 1482
 case xmssmt-sha2_60/12_192: 1483

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

49

 case xmssmt-shake256_20/2_192: 1484
 case xmssmt-shake256_20/4_192: 1485
 case xmssmt-shake256_40/2_192: 1486
 case xmssmt-shake256_40/4_192: 1487
 case xmssmt-shake256_40/8_192: 1488
 case xmssmt-shake256_60/3_192: 1489
 case xmssmt-shake256_60/6_192: 1490
 case xmssmt-shake256_60/12_192: 1491
 bytestring24 root_n24; 1492
 1493
 case xmssmt-shake256_20/2_256: 1494
 case xmssmt-shake256_20/4_256: 1495
 case xmssmt-shake256_40/2_256: 1496
 case xmssmt-shake256_40/4_256: 1497
 case xmssmt-shake256_40/8_256: 1498
 case xmssmt-shake256_60/3_256: 1499
 case xmssmt-shake256_60/6_256: 1500
 case xmssmt-shake256_60/12_256: 1501
 bytestring32 root_n32; 1502
}; 1503

 1504

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

50

Appendix C—Provable Security Analysis 1505

This appendix briefly summarizes the formal security model and proofs of security of the LMS 1506
and XMSS signature schemes and provides a short discussion comparing these models and 1507
proofs. 1508

C.1 The Random Oracle Model 1509

In the random oracle model (ROM), there is a publicly accessible random oracle that both the 1510
user and the adversary can send queries to and receive responses from at any time. A random 1511
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules: 1512

1. Every time the algorithm H receives a new input string s, it generates an output t 1513
uniformly at random from its output space and returns the response t. The algorithm H 1514
then records the pair (s, t) for future use. 1515

2. If the algorithm H is ever queried in the future with some prior input s, it will always 1516
return the same output t according to its recorded memory. 1517

Alternatively, the random oracle H can be described as a non-interactive but exponentially large 1518
look-up table initialized with truly random outputs t for each possible input string s. 1519

To say that a cryptographic security proof is done in the random oracle model means that every 1520
use of a particular function (for example, in the case here, the compression function that is used 1521
to perform hashes) is replaced by a query to the random oracle H. This simplifies security claims 1522
as, for example, it becomes easy to prove upper bounds on the likelihood of producing a second 1523
preimage within a fixed number of queries to H. On the other hand, (compression) functions in 1524
the real world are neither interactive nor have exponentially large descriptions, so they cannot 1525
truly behave like a random oracle. 1526

It is therefore desirable to have a cryptographic security proof that avoids using the random 1527
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet 1528
known how to perform a proof without appealing to the random oracle model, or both. So, as a 1529
matter of real-world pragmatism, the ROM is commonly used. 1530

C.2 The Quantum Random Oracle Model 1531

The quantum random oracle model (QROM) is similar to the ROM, except it is additionally 1532
assumed that all parties (in particular, the adversary) have quantum computers and can query the 1533
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a 1534
compression function or similar, as per the cryptosystem’s specification.) While this complicates 1535
security claims as compared to the ROM, it more accurately models the power of an adversary 1536
that has access to a large-scale quantum device for its cryptanalysis when attacking a real-world 1537
scheme. 1538

C.3 LMS Security Proof 1539

In [11], the author considers a particular experiment in the random oracle model in which the 1540

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

51

adversary is given a series of strings with prefixes (in a randomly chosen but structured manner) 1541
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash 1542
target as any of its input strings. The author proves an upper bound on the adversary’s ability to 1543
compute first or second preimages from these strings (by querying the compression function 1544
modeled as a random oracle). 1545

Then, the author reduces the problem of forging a signature in LMS to this stated experiment, 1546
concluding that the same upper bounds apply to the problem of producing forgeries against 1547
LMS. This random oracle model proof critically depends on the randomness of the prefixes used 1548
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of 1549
the prefixes. 1550

Further, in [15], the same proof is carried out in the QROM. 1551

C.4 XMSS Security Proof 1552

In [12], a security analysis for the original (academic publication) version of XMSS is given 1553
under the following assumptions: 1554

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This 1555
means that if the bit string k is chosen uniformly at random, then an adversary given 1556
black-box access to the function fk cannot distinguish this black box from a random 1557
function within a polynomial number of queries (except with negligible probability). 1558

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings 1559
k and m are chosen uniformly at random, then an adversary given k and m cannot 1560
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible 1561
probability). 1562

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially 1563
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model. 1564

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the 1565
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is 1566
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to 1567
the QROM. 1568

In a little more detail, the current version of XMSS uses two types of assumptions: 1569

1. A standard model assumption – that the hash function hk, used for the one-time signatures 1570
and tree node computations, is post-quantum, multi-function, multi-target decisional 1571
second- preimage-resistant. 1572

2. A (quantum) random oracle model assumption – that the pseudorandom function fk, used 1573
to generate pseudorandom values for randomized hashing and computing bitmasks as 1574
blinding keys, may be validly modeled as a quantum random oracle H. 1575

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

52

C.5 Comparison of the Security Models and Proofs of LMS and XMSS 1576

Generally speaking, both LMS and XMSS are supported by sound security proofs under 1577
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions 1578
are true, then both schemes are provably shown to be existentially unforgeable under chosen 1579
message attack, even against an adversary that has access to a large-scale quantum computer for 1580
use in its forgery attack. 1581

The main difference between these schemes’ security analyses comes down to the use (and the 1582
degree of use) of the random oracle or quantum random oracle models. Along these lines, the 1583
difference between the (standard model/real world) cryptographic assumption that some function 1584
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a 1585
function fk to be a pseudorandom function in the real world, it should be the case that the bit 1586
string k used as the key to the function remains private, meaning that it is not in the view of the 1587
adversary at any point of the security experiment. On the other hand, a random oracle H achieves 1588
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but 1589
there is no key k necessarily associated with the random oracle. Indeed, all inputs to the random 1590
oracle H may be known to all parties and, in particular, to the adversary. Therefore, using the 1591
random oracle model clearly involves making a stronger assumption about the (limits of the) 1592
cryptanalytic power of the adversary. 1593

That said, a security proof is either entirely a “real world proof,” which does not use the random 1594
oracle model, or it appeals to the random oracle methodology in some manner. The security 1595
analysis of the current version of XMSS only uses the random oracle H when performing 1596
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a 1597
greater degree (modeling the compression function as a random oracle). However, it remains the 1598
case that both schemes in their modern form are ultimately proven secure using the ROM and 1599
QROM. 1600

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve 1601
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as 1602
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s 1603
decision to deploy one scheme or the other should primarily depend on other factors, such as the 1604
efficiency demands for a given deployment environment or the other security considerations 1605
enumerated earlier in this document. 1606

